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Abstract. We tackle the problem of expressing incomplete knowledge
about the attack relation in abstract argumentation frameworks. In
applications, incomplete argumentation frameworks may arise as inter-
mediate states in an elicitation process, when merging different beliefs
about an argumentation framework’s state, or in cases where the com-
plete information cannot be fully obtained. To this end, we employ a
model introduced by Cayrol et al. [10] and analyze the question of
whether certain justification criteria are possibly (or necessarily) ful-
filled, i.e., whether they are fulfilled in some (or in every) completion of
the incomplete argumentation framework. We formally extend the defi-
nition of existing criteria to these incomplete argumentation frameworks
and provide characterization and complexity results for variants of the
verification problem.

1 Introduction

Argumentation frameworks are used to model discussions and deliberations
among agents, be it human beings or software agents. The aim is to find sets of
arguments that can be considered “justified” by satisfying certain properties. In
a pathbreaking paper, Dung [17] introduced a formal model to describe argu-
mentation frameworks and their semantics, which abstracts from the content
of arguments and regards their interaction only. More background on abstract
argumentation in artificial intelligence can be found in the book by Rahwan and
Simari [30].

We revisit a generalized model for abstract argumentation frameworks origi-
nally proposed by Cayrol et al. [10] who extend the classical model to an attack-
incomplete setting. In attack-incomplete argumentation frameworks, all argu-
ments are known, but the set of all possible attacks between them is partitioned
into attacks that are either known to definitely exist, or known to definitely
never exist, or currently unknown to exist but that may potentially arise in the
future. We study central properties and semantics of argumentation frameworks,
such as conflict-freeness, admissibility, stability, preferredness, completeness, and
groundedness [17], which we extend to the attack-incomplete setting by asking
whether they are possibly or necessarily fulfilled. As our technical contribution,
we provide characterization and complexity results for variants of the standard
verification problem in attack-incomplete argumentation frameworks.
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Related Work and Motivation: Our work is motivated by the “Online Partic-
ipation” project, an interdisciplinary graduate college of HHU Düsseldorf and
other institutions1 in which researchers from economics, communication theory,
political sciences, social sciences, law, and computer science are participating.
A central goal in this project is to build an internet platform that can be used
for online discussions and deliberations. While these—as mentioned above—can
be modeled abstractly by argumentation frameworks, a major drawback of the
classical model due to Dung [17] is that it assumes complete knowledge of the
arguments and the attack relation, that is, the process of arguing is assumed
to have been completed already. However, such complete information is rarely
available in practical applications; rather, one would like to model such an online
discussion dynamically, evolving over time.

First ideas regarding dynamic changes in argumentation frameworks apply-
ing the theory of belief revision are due to Cayrol et al. [11], who also survey
the literature on the dynamics of abstract argumentation frameworks [12]. They
limit themselves to the addition or deletion of one argument, together with a
respective change in the attack relation. Their work focuses on a classification of
how and why those changes can alter the set of extensions of the given argumen-
tation framework. Boella et al. [6] define general principles for the abstraction
of arguments and attacks for the grounded semantics mainly. Liao et al. [26]
investigate the question of how one can efficiently compute the status of an
argument (i.e., whether it is accepted, rejected, or undecided) upon changing
the arguments and attacks. Coste-Marquis et al. [14] study how belief revision
postulates can be applied to argumentation systems.

Also, the concept of incomplete knowledge in abstract argumentation has
recently received some attention. In probabilistic argumentation frameworks (see,
for example, the work of Li et al. [25], Rienstra [31], Fazzinga et al. [19,20],
Hunter [22], and Doder and Woltran [16]), arguments and/or attacks have an
associated probability, which represents an agent’s degree of belief that the argu-
ment or attack is in force, or their reluctance to disregard the argument or attack.
This can be considered as a quantified model of uncertainty that allows to derive
the probability of certain criteria to hold. Baumeister et al. [5] study a model of
argument-incomplete argumentation frameworks.

Cayrol et al. [10] propose argumentation frameworks with an additional
“ignorance relation” among arguments that contains the attacks for which there
is uncertainty. We adopt their extended framework model, but take a differ-
ent perspective: In their work [10], new semantics for attack-incomplete argu-
mentation frameworks are defined, which puts a lot of focus on the incomplete
framework itself, rather than on its completions. Opposed to that, we analyze
whether standard semantics apply in some (or all) completions of an incomplete
framework. This is a natural question arising when dealing with incomplete

1 Besides four faculties of HHU Düsseldorf and the Fachhochschule für öffentliche Ver-
waltung NRW, the practice partners of this project include registered societies, limited
liability companies, and the municipal councils of Köln, Bonn, and Münster, among
others. We refer to the website http://www.fortschrittskolleg.de for more details.

http://www.fortschrittskolleg.de
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knowledge and has already been considered for similar notions of uncertainty in
various areas. In the related field of computational social choice (see, e.g., the
book chapter by Brandt et al. [9]), and especially so in voting, classical complete-
information settings have been extended to allow for incomplete information as
well. The book chapters by Boutilier and Rosenschein [7] and Baumeister and
Rothe [1] survey the known results on incomplete information and communi-
cation in voting, in particular covering the concepts of possible and necessary
winners in elections that have been introduced by Konczak and Lang [23] and
studied in terms of computational complexity both for the original problems
(see, e.g., [23,34]) and for a number of variants, such as possible winners when
new alternatives are added [13], when there is uncertainty about which vot-
ing rule is used [2], and when there is uncertainty about the voters’ weights in
weighted elections [3].2 The notions of possible and necessary winners have also
been transferred to other fields where information may be incomplete, including
fair division [8], algorithmic game theory [24], and judgment aggregation [4].

In Sect. 2, we describe the classical model of abstract argumentation frame-
works, and we provide the needed notions from complexity theory. In Sect. 3, we
introduce attack-incomplete argumentation frameworks and in Sect. 4 we present
our results. In Sect. 5, we give our conclusions and state some open questions.

2 Preliminaries

In this section, we introduce the classical argumentation framework model and
the notation used in this paper and provide some basic notions of complexity
theory. Our models are based on the seminal work of Dung [17] who intro-
duced an abstract model for argumentation frameworks; while using his notions
and concepts, we adopt some notation from the book chapter by Dunne and
Wooldridge [18].

An argumentation framework is a pair AF = 〈A ,R〉 that contains a set A
of n arguments and a binary attack relation R ⊆ A × A of up to n2 pairs
of arguments. We say that a attacks b if (a, b) ∈ R. Given an argumentation
framework AF = 〈A ,R〉, the set of attackers of a set B of arguments is {a ∈
A | ∃b ∈ B : (a, b) ∈ R}. We say that a set D of arguments defends a set
B of arguments if for each attacker a of B, there is an argument d ∈ D with
(d, a) ∈ R. Accordingly, D does not defend B if there is an attacker of B that
is not attacked by any d ∈ D.

Every argumentation framework can be illustrated as a directed graph G =
(V,E) by identifying V = A and E = R (see Example 1 and Fig. 1).

Example 1. A very basic argumentation framework is AF = 〈A ,R〉
with the argument set A = {a, b, c, d} and the attacks R =
{(a, b), (a, c), (a, d), (b, d), (c, c), (d, a), (d, b)} (see Fig. 1 for its graph represen-
tation).
2 Other models of incomplete-information settings in voting include dynamic social

choice with evolving preferences [29] and online manipulation in sequential elec-
tions [21].
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Fig. 1. Graph representation of the argumentation framework in Example 1

We now formally define the properties of sets of arguments in argumentation
frameworks that were introduced in Dung’s initial work and that are central to
this paper:

1. The most basic property is conflict-freeness, which simply forbids attacks
within a subset of the arguments. Formally, a subset S ⊆ A is conflict-free if
there are no arguments a and b in S such that (a, b) ∈ R.

2. An argument a ∈ A is acceptable with respect to S ⊆ A if S defends a, i.e.,
if for all b ∈ A with (b, a) ∈ R, there is at least one c ∈ S with (c, b) ∈ R.

3. Further, a conflict-free set S of arguments is called admissible if every argu-
ment a ∈ S is acceptable with respect to S.

Dung defines several semantics based on these properties in his original
work, namely the preferred, stable, complete, and grounded semantics. Subse-
quent papers on argumentation frameworks proposed a variety of further seman-
tics, but we will only be concerned with the semantics mentioned above.3

1. A set S ⊆ A is preferred if S is a maximal (with respect to set inclusion)
admissible set.

2. A conflict-free set S ⊆ A is stable if it attacks all other arguments, i.e., if for
every argument b ∈ A �S, there exists an a ∈ S with (a, b) ∈ R.

3. The complete semantics is defined via the characteristic function of an argu-
mentation framework AF , which is FAF : 2A → 2A with

FAF (S) = {a ∈ A | a is acceptable with respect to S}.

The characteristic function is monotonic with respect to set inclusion and
there is always an i ∈ N for which the i-fold composition of FAF has a fixed
point. A set S ⊆ A is complete if it is a fixed point of FAF , or equivalently,
if every a ∈ A that is acceptable with respect to S is contained in S.

4. The (unique) grounded set of an argumentation framework AF is the least
(with respect to set inclusion) fixed point of FAF , i.e., the complete set
obtained when starting with the empty set.

3 In addition to these semantics we also use conflict-freeness and admissibility as criteria.
While these are generally not considered to be semantics, we will not always explicitly
distinguish between semantics and basic properties for the sake of conciseness.
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Fig. 2. Relations among the various criteria and semantics for sets of arguments

Dung investigates how these properties are correlated, and provides many
results for this that we can make use of. Figure 2 displays all relations among
the various criteria and semantics that we use. If an area labeled with criterion
s is fully included in an area labeled with criterion s′, this indicates that in
all argumentation frameworks all sets of arguments that fulfill s also fulfill s′.
The converse is not necessarily true, i.e., all displayed set inclusions are strict.
Further, none of the areas are disjoint, so one and the same set of arguments
might fulfill all criteria/semantics simultaneously.

Given an argumentation framework AF and a semantics s, a set S of argu-
ments that fulfills the conditions imposed by s in AF is also called an s extension
of AF . If it is clear from the context, we omit stating explicitly the argumenta-
tion framework that the subset is an extension of.

Dunne and Wooldridge [18] give an overview of a number of decision prob-
lems, each defined for various semantics. We will focus on only one of them,
namely, the verification problem.

s-Verification

Given: An argumentation framework 〈A ,R〉 and a subset S ⊆ A .

Question: Is S an s extension?

Here, the letter s is a placeholder for a specific semantics. For better read-
ability, we will sometimes use cf as a shorthand for conflict-freeness, ad for
admissibility, pr for preferredness, st for stability, cp for completeness, and gr
for groundedness.

Other previously considered decision problems are, for example, s-
Existence, s-Credulous-Acceptance, and s-Skeptical-Acceptance (for
a definition, see, for example, [18]). Many of these problems are hard to decide:
They are complete for the complexity classes NP, coNP, or even Πp

2 . By con-
trast, s-Verification is easy for most semantics s studied here, which follows
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immediately from the work of Dung [17], with the only exception being pr-
Verification, which is known to be coNP-complete [15].

We assume the reader to be familiar with the basic notions of complexity
theory, such as the complexity classes P, NP, and coNP mentioned above and
with the notions of hardness and completeness (based on the polynomial-time
many-one reducibility, ≤p

m). Σp
2 = NPNP and Πp

2 = coNPNP are the second
level of the polynomial hierarchy, which has been introduced by Meyer and
Stockmeyer [27,33]. It holds that P ⊆ NP ⊆ Σp

2 ∪Πp
2 and P ⊆ coNP ⊆ Σp

2 ∪Πp
2 ,

and none of these inclusions is known to be strict. For further details, see, e.g.,
[28,32].

3 Attack-Incomplete Argumentation Frameworks

We will now consider argumentation frameworks with incomplete knowledge
about the attack relation, where a set of n arguments is fixed and only a subset
of all n2 possible attacks is known to either definitely exist or to definitely not
exist—the state of the remaining attacks is currently unknown. We call this an
attack-incomplete argumentation framework.

3.1 Model and Formal Definitions

An extension of standard argumentation frameworks to attack-incomplete argu-
mentation frameworks was proposed by Cayrol et al. [10], which allows to dis-
tinguish between definite attacks, impossible attacks, and possible attacks. We
apply their extended model using a slightly different notation.

Definition 1. An attack-incomplete argumentation framework is a triple
〈A ,R+,R−〉, where A is a nonempty set of arguments and R+ and R− are
disjoint subsets of A ×A . R+ denotes the set of all ordered pairs of arguments
between which an attack is known to definitely exist, while R− denotes the set
of all ordered pairs of arguments between which an attack is known to never
exist. The set of possible attacks (A ×A )�(R+ ∪R−), which is implicitly given
through R+ and R−, is denoted as R?.

Let AF = 〈A ,R+,R−〉 be a given attack-incomplete argumentation frame-
work. An argumentation framework AF ∗ = 〈A ,R∗〉 with R+ ⊆ R∗ ⊆ R+ ∪R?

is called a completion of AF . Every attack-incomplete argumentation framework
obviously has 2‖R?‖ different completions. In particular, we call the completion
that discards all possible attacks (R∗ = R+) the minimal completion of AF ,
and the completion that includes all possible attacks (R∗ = R+ ∪ R?) is called
the maximal completion of AF .

We now extend the notions for classical argumentation frameworks that we
described in Sect. 2 to attack-incomplete argumentation frameworks, distinguish-
ing between properties holding either possibly or necessarily. Generally, a prop-
erty holds possibly for an attack-incomplete argumentation framework AF if
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Fig. 3. An attack-incomplete argumentation framework

there exists a completion AF ∗ of AF for which the property holds, and a prop-
erty holds necessarily if it holds for all completions of AF .4 Note that if a
property holds necessarily, it also holds possibly; even if R? = ∅, there exists
20 = 1 completion, which happens to be both minimal and maximal in this case.

Example 2. Figure 3 gives the graph representation of an attack-incomplete
argumentation framework AF = 〈A ,R+,R−〉 with the set A = {a, b, c, d}
of arguments, where definite attacks R+ = {(b, d), (c, c), (d, a)} are drawn
as solid arcs, possible attacks R? = {(a, a), (a, b), (a, c), (d, b), (d, c)} as
dotted arcs, and attacks that are known to never exist (i.e., R− =
{(a, d), (b, a), (b, b), (b, c), (c, a), (c, b), (c, d), (d, d)}) are not displayed.

For this example, it holds that the sets ∅, {b}, and {d} are the only necessarily
conflict-free extensions of AF , while the sets ∅, {a}, {b}, {d}, and {a, b} are the
only possibly conflict-free extensions of AF .

Deciding whether a given property holds possibly (respectively, necessarily)
adds an existential (respectively, universal) quantifier over an exponential space
to the standard problem, potentially making it intractable or increasing its level
of intractability. However, some problems remain easy to solve. This is obvious,
for example, for the possible and necessary attack between two given arguments:
An argument a ∈ A is possibly attacked (respectively, necessarily attacked) by
an argument b ∈ A if and only if (b, a) �∈ R− (respectively, (b, a) ∈ R+),
which can clearly be verified in polynomial time. In Sect. 4, we will present our
results on the complexity of deciding whether a set of arguments is a possible or
necessary s-extension for all considered semantics s.

3.2 Comparison with the Model of Cayrol et al. [10]

Although we use the notion of attack-incomplete argumentation framework due
to Cayrol et al. [10] (called Partial Argumentation Framework (PAF) in their

4 Unlike the concepts of credulous and skeptical acceptance in the related literature,
which denote membership of arguments in, respectively, some and all extensions of a
specific argumentation framework, our notions of properties holding possibly and nec-
essarily describe criteria holding in, respectively, some and all argumentation frame-
works (i.e., completions), and are therefore settled one level of abstraction higher.
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Table 1. Comparison of properties of sets of arguments

Property from [10] Our property

S is R-conflict-free ⇐⇒ S is possibly conflict-free

S is RI -conflict-free ⇐⇒ S is necessarily conflict-free

a is R-acceptable w.r.t. S �⇐⇒ a is possibly acceptable w.r.t. S

a is RI -acceptable w.r.t. S ⇐⇒ a is necessarily acceptable w.r.t. S

S is R-admissible �⇐⇒ S is possibly admissible

S is RI -admissible ⇐⇒ S is necessarily admissible

S is R-preferred �⇐⇒ S is possibly preferred

S is RI -preferred �⇐⇒ S is possibly preferred

work), we do not take the same perspective on properties and semantics: While
they define new semantics for the PAFs themselves, we will analyze whether
the conditions of standard semantics are fulfilled in some or all completions of
it. This avoids the strange case where an incomplete framework satisfies some
property, despite none of its completions satisfying this property; for example, in
the model by Cayrol et al. it may be the case that a set S of arguments is the only
RI -preferred extension5 of an attack-incomplete argumentation framework, even
though it is not a preferred extension for any of the framework’s completions.

While the formal conditions imposed by both approaches coincide in some
cases, they are generally different. Table 1 gives an overview of all criteria and
semantics introduced by Cayrol et al.6 and their counterparts in our model, and
indicates whether or not they are equivalent. A formal proof of why equivalence
does or does not hold in each individual case is omitted due to space constraints.

4 Possible and Necessary Verification

The problem s-Verification for standard argumentation frameworks natu-
rally yields two problems for attack-incomplete argumentation frameworks, s-
Att-Inc-Possible-Verification and s-Att-Inc-Necessary-Verification,
for each semantics s.

s-Att-Inc-Possible-Verification (s-AttIncPV)

Given: An attack-incomplete argumentation framework AF = 〈A ,R+,R−〉
and a set S ⊆ A .

Question: Is there a completion AF ∗ of AF such that S is an s extension in AF ∗?

5 A set of arguments is RI -preferred if it is maximal among all necessarily admissible
sets, where R=̂R+ and I =̂R? in our notation.

6 For formal definitions of these criteria, see their work [10].
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s-Att-Inc-Necessary-Verification (s-AttIncNV)

Given: An attack-incomplete argumentation framework AF = 〈A ,R+,R−〉
and a set S ⊆ A .

Question: For all completions AF ∗ of AF , is S an s extension in AF ∗?

As already mentioned, the original problem can be solved efficiently for the
admissible, stable, complete, and grounded semantics. We prove that both new
problems can still be solved efficiently for these semantics, even though the
number of completions is exponential in the number of possible attacks. We
define best-case and worst-case completions for the different semantics, a given
attack-incomplete argumentation framework AF , and a given set S of argu-
ments. Intuitively, a best-case completion includes all attacks that are beneficial
for S with respect to the considered semantics, whereas a worst-case comple-
tion includes those attacks that harm the conditions imposed by the semantics.
We prove that these completions are critical completions for the respective deci-
sion problem, i.e., the answer to the Verification variant corresponding to
the attack-incomplete framework is the same as that to Verification for the
respective completion.

4.1 Verifying Conflict-Freeness, Admissibility, and Stability

For conflict-freeness, admissibility, or stability of a set S of arguments, all
attacks against elements of S are never beneficial and possibly harmful, and all
attacks against arguments outside of S are never harmful and possibly beneficial.
Thus the simple and straightforward “optimistic” and “pessimistic” completions,
defined as follows, can serve as critical completions for these three criteria.

Definition 2. Let AF = 〈A ,R+,R−〉 be an attack-incomplete argumentation
framework and let S ⊆ A . The optimistic completion of AF for S is AF opt

S =
〈A ,Ropt

S 〉 with Ropt
S = R+ ∪ {(a, b) ∈ R? | b �∈ S}. The pessimistic completion

of AF for S is AF pes
S = 〈A ,Rpes

S 〉 with Rpes
S = R+ ∪ {(a, b) ∈ R? | b ∈ S}.

Example 3. Figure 4 displays the optimistic and the pessimistic completion for
S = {a, b} in the argumentation framework from Example 2: Possible attacks
that are added to the set of definite attacks in the respective completion are
drawn as boldfaced arcs, possible attacks that are not added to the set of definite
attacks in the respective completion are omitted in Fig. 4(b) and (c), and the
arguments in S are displayed by boldfaced circles.

Lemma 1. Let AF = 〈A ,R+,R−〉 be an attack-incomplete argumentation
framework, let S ⊆ A , and let AF opt

S be the optimistic completion of AF for S.

1. S is possibly conflict-free in AF if and only if S is a conflict-free extension
of AF opt

S .
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(a) Attack-incomplete AF
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(b) Optimistic completion
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(c) Pessimistic completion

Fig. 4. Optimistic and pessimistic completions for S = {a, b}

2. a ∈ S is possibly acceptable with respect to S in AF if and only if a is
acceptable with respect to S in AF opt

S .
3. S is possibly admissible in AF if and only if S is an admissible extension of

AF opt
S .

4. S is possibly stable in AF if and only if S is a stable extension of AF opt
S .

Proof. The converse is trivial in all cases: If S fulfills a given criterion in AF opt
S ,

this immediately yields that S possibly fulfills the criterion in AF . We now prove
the other direction of the equivalence individually for each criterion:

1. If a set S of arguments is not conflict-free in AF opt
S , then there must be an

attack between elements of S in Ropt
S , which must be already in R+ due to

how Ropt
S is constructed, and which therefore exists in every completion of

AF . Thus S is not a possibly conflict-free set in AF .
2. If there is some a ∈ S that is not acceptable with respect to S in AF opt

S ,
then it is attacked by some b ∈ A in Ropt

S and there is no attack from an
element of S against b in Ropt

S . By construction, Ropt
S does not contain any

possible attacks (members of R?) that attack elements of S, and it contains
all possible attacks that can defend S. Therefore, all attacks in Ropt

S against
elements of S are already in R+, so the undefended attack from b against a is
in every completion of AF . Since a cannot be acceptable with respect to S in
any completion of AF , a is not possibly acceptable with respect to S in AF .

3. Assume that S is not an admissible extension in AF opt
S , i.e., S is not conflict-

free in AF opt
S or there is some a ∈ S that is not acceptable with respect to S

in AF opt
S . In either case, the previous results imply that S is not conflict-free

in any completion of AF or a is not acceptable with respect to S in any
completion of AF . Thus S is not a possibly admissible extension in AF .

4. If a set S of arguments is not stable in AF opt
S , S is necessarily not conflict-

free in AF or there is an a ∈ A �S that is not attacked by S in AF opt
S ,

and therefore—by construction of AF opt
S —a cannot be attacked by S in any

completion of AF . In both cases, there is no completion of AF for which S
is stable, so S is not a possibly stable extension of AF .

This completes the proof. �
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An analogous result holds for the pessimistic completion and the same prop-
erties holding necessarily. The proof of Lemma 2 is omitted due to space con-
straints.

Lemma 2. Let AF = 〈A ,R+,R−〉 be an attack-incomplete argumentation
framework, S ⊆ A , and let AF pes

S be the pessimistic completion of AF for S.

1. S is necessarily conflict-free in AF if and only if S is a conflict-free extension
of AF pes

S .
2. a ∈ S is necessarily acceptable with respect to S in AF if and only if a is

acceptable with respect to S in AF pes
S .

3. S is necessarily admissible in AF if and only if S is an admissible extension
of AF pes

S .
4. S is necessarily stable in AF if and only if S is a stable extension of AF pes

S .

Note that in the second part of Lemmas 1 and 2 it is required that a ∈ S;
the properties do not hold for the general case where a ∈ A .

Finally, we can conclude that s-AttIncPV and s-AttIncNV are in P for
conflict-freeness, admissibility, and stability.

Theorem 1. For s ∈ {cf,ad, st}, both s-AttIncPV and s-AttIncNV are
in P.

Proof. The optimistic and pessimistic completions can obviously be constructed
in polynomial time. As already mentioned, the problem s-Verification can be
solved in polynomial time for a given completion. Lemmas 1 and 2 then provide
that the answer to, respectively, s-AttIncPV and s-AttIncNV is the same as
that to s-Verification for the respective completion. �

4.2 Verifying Groundedness and Completeness

Recall that, for a given argumentation framework AF , the set of complete exten-
sions is the set of fixed points of the characteristic function FAF , and the (unique)
grounded extension is the fixed point of the characteristic function FAF when
starting with the empty set. For the complete and the grounded semantics, a
critical completion of an attack-incomplete argumentation framework for a given
set S of arguments can be constructed by choosing attacks in a way that makes
it most likely (respectively, most unlikely) for S to be a fixed point of FAF . We
call a completion in which S is most likely to be a fixed point of FAF a “fixed
completion,” and a completion in which it is most unlikely to be a fixed point
an “unfixed completion.”

Definition 3. Let AF = 〈A ,R+,R−〉 be an attack-incomplete argumentation
framework and S ⊆ A . The fixed completion AF fix

S of AF is the completion that
is obtained by the following algorithm. The algorithm defines a finite sequence
(AFi)i≥0 of attack-incomplete argumentation frameworks, with the fixed comple-
tion being the minimal completion of the sequence’s last element.
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1. Include definite attacks: Let AF0 = AF .
2. Include external conflicts: Let AF1 = 〈A ,R+

1 ,R−〉 with R+
1 = R+∪{(a, b) ∈

R? | a �∈ S and b �∈ S}.
3. Include defending attacks: Let T = {t ∈ A �S | ∃s ∈ S : (t, s) ∈ R+

1 } (i.e.,
each argument in T necessarily attacks S) and let AF2 = 〈A ,R+

2 ,R−〉 with
R+

2 = R+
1 ∪ {(a, b) ∈ R?

1 | a ∈ S and b ∈ T}.
4. Avoid arguments outside of S to be acceptable with respect to S: For the

current i (initially, i = 2), let AFmin
i be the minimal completion of AFi and

Ti = FAFmin
i

(S)�S (i.e., Ti is the set of arguments that are not in S, but
that are acceptable with respect to S in the current minimal completion). Let
AFi+1 = 〈A ,R+

i+1,R
−〉 with R+

i+1 = R+
i ∪{(a, b) ∈ R?

i | a ∈ S and b ∈ Ti},
and set i ← i + 1.

5. Repeat Step 4 until no more attacks are added.
6. The fixed completion of AF is AF fix

S = 〈A ,Rfix
S 〉 with Rfix

S = R+
i .

Definition 4. Let AF = 〈A ,R+,R−〉 be an attack-incomplete argumentation
framework and S ⊆ A . The unfixed completion AF unf

S of AF is the com-
pletion that is obtained by the following algorithm. The algorithm defines a
finite sequence (AFi)i≥0 of attack-incomplete argumentation frameworks, with
the unfixed completion being the minimal completion of the sequence’s last ele-
ment.

1. Include definite attacks: Let AF0 = AF .
2. Include attacks against S: Let AF1 = 〈A ,R+

1 ,R−
1 〉 with R+

1 = R+∪{(a, b) ∈
R? | b ∈ S} and R−

1 = R−.
3. Exclude external conflicts: Let AF2 = 〈A ,R+

2 ,R−
2 〉 with R+

2 = R+
1 and

R−
2 = R−

1 ∪ {(a, b) ∈ R?
1 | a �∈ S and b �∈ S}.

4. Exclude defending attacks: Let T = {t ∈ A �S | ∃s ∈ S : (t, s) ∈ R+
2 } (i.e.,

each argument in T necessarily attacks S) and let AF3 = 〈A ,R+
3 ,R−

3 〉 with
R+

3 = R+
2 and R−

3 = R−
2 ∪ {(a, b) ∈ R?

2 | a ∈ S and b ∈ T}.
5. Try to let arguments outside of S be acceptable with respect to S: Let T =

A �S = {t1, . . . , tk}. For the current i (initially, i = 3) and for each tj ∈ T ,
do:
(a) For S′ = S ∪ {tj}, let AF opt

i,S′ be the optimistic completion of AFi for S′

and let AFmin
i be the minimal completion of AFi.

(b) If tj is acceptable with respect to S in AF opt
i,S′ , but not acceptable with

respect to S in AFmin
i , let AFi+1 = 〈A ,R+

i+1,R
−
i+1〉 with R+

i+1 = R+
i ∪

{(a, b) ∈ R?
i | a ∈ S and (b, tj) ∈ R+

i } and R−
i+1 = R−

i , and set i ← i+1.
(To accept an argument tj that is not currently accepted by S but possibly
accepted by S, include all possible attacks by S against tj’s attackers.)

6. Repeat Step 5 until no more attacks are added.
7. The unfixed completion of AF is AF unf

S = 〈A ,Runf
S 〉 with Runf

S = R+
i .

Lemma 3. For an attack-incomplete argumentation framework AF =
〈A ,R+,R−〉 and a set S ⊆ A of arguments, the fixed completion AF fix

S and
the unfixed completion AF unf

S can be constructed in polynomial time.
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Proof. All individual steps in both constructions can obviously be carried out in
time polynomial in the number of arguments. It remains to prove that the loops
in, respectively, Step 4 and Step 5 run at most a polynomial number of times.
For the fixed completion, in each execution of a loop there is either (at least) one
possible attack that is added to R+

i+1, or no action is taken in which case the loop
terminates. Therefore, the number of times a loop is executed is bounded by the
number of possible attacks in the attack-incomplete argumentation framework
AF , which is at most n2, where n is the number of arguments. For the unfixed
completion, the only difference is the sub-loop in Step 5, which however has a
predefined number of iterations that is bounded by the number n of arguments.
Therefore, the total number of loop iterations in the construction of the unfixed
completion is bounded by n3. This completes the proof. �

Now we prove that the fixed completion indeed is a critical completion for
the complete and the grounded semantics.

Lemma 4. Let AF = 〈A ,R+,R−〉 be an attack-incomplete argumentation
framework, S ⊆ A , and let AF fix

S be the fixed completion of AF for S. (1) S
is a possibly complete extension of AF if and only if S is a complete extension
of AF fix

S . (2) S is a possibly grounded extension of AF if and only if S is the
grounded extension of AF fix

S .

Proof. Again, the converse is trivial in both cases. Further, if S is not an admis-
sible extension in AF fix

S , then S is not admissible in any completion of AF , due
to the same arguments that we used for the optimistic completion and, therefore,
neither possibly complete nor possibly grounded in AF . So, we may assume that
S is admissible in AF fix

S .
(1) Assume that S is not a complete extension of AF fix

S , i.e., S is not a fixed
point of FAF fix

S
. We will show that this implies that S is not possibly complete

in AF . Since S is not a fixed point of FAF fix
S

, there is an argument b �∈ S which
is acceptable with respect to S in AF fix

S .
We prove that, then, there must be some c �∈ S for which all attackers of c

are attacked by S in AF ∗ (c = b may or may not be the case) by individually
covering all cases in which attacks are added to Rfix

S :
All attacks from R? between arguments outside of S, which are added to

Rfix
S in Step 2, cannot make an argument b �∈ S acceptable with respect to S: If

S did not attack all attackers of an argument before, it cannot do so after more
attackers are added.

All attacks that are added in Step 3 are crucial for S to be admissible, and
must therefore also be included in R∗. In a case where multiple arguments in
S attack a single attacker of S, it would be sufficient to include one of these
defending attacks, but including all of them does not make a difference, since
the criterion of being acceptable with respect to S does not distinguish between
different elements of S.

All attacks that are added in Step 4 are attacks by S against arguments
that are currently acceptable with respect to S. Since all possible attacks among
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arguments outside of S were already included in Step 2, the only way to destroy
acceptability of these arguments is by S directly attacking them. Therefore, none
of the attacks added in Step 4 can be omitted without making the respective
argument acceptable with respect to S (again, it is not necessary to distinguish
between multiple attacks by different arguments in S against the same argu-
ment). It is possible for a given b �∈ S to be acceptable with respect to S in
AF fix

S and not in AF ∗, but this happens only if S attacks an attacker (or several
attackers) of b in AF fix

S that would otherwise be acceptable with respect to S,
and which therefore must be acceptable with respect to S in AF ∗. In either case,
if an argument outside of S is acceptable with respect to S in AF fix

S , then some
argument outside of S must be acceptable with respect to S in each completion
AF ∗ of AF in which S is admissible. Therefore, if S is not a complete exten-
sion of AF fix

S , it is not a complete extension of any completion AF ∗ of AF , and
therefore not a possibly complete extension of AF .

(2) Let AF ∗ be an arbitrary completion of AF and assume that S is its
grounded extension. We prove that, then, S is also the grounded extension of
AF fix

S . Let Ai = F i
AF∗(∅) and Bi = F i

AF fix
S

(∅), where F i is the i-fold composition
of the respective characteristic function F . Since S is grounded in AF ∗, it is
complete in AF fix

S due to our previous result, and it holds that Ai ⊆ S for all
i ≥ 0 and there exists a j ≥ 0 such that for all i ≥ j, it holds that Ai = S.
We will prove that Ai ⊆ Bi ⊆ S for all i ≥ 0. Combined, these statements show
that there exists some j such that Bi = S for all i ≥ j, which is equivalent to S
being the grounded extension of AF fix

S .
First, we prove that Ai ⊆ Bi for all i ≥ 0. For i = 0, we have Ai = Bi = ∅.

For i = 1, Ai (respectively, Bi) is the set of all unattacked arguments in AF ∗

(respectively, in AF fix
S ). We know that A1 ⊆ S. Since the fixed completion

does not include any possible attacks against elements of S, all a ∈ S that are
unattacked in AF ∗ are unattacked in AF fix

S , too, which proves A1 ⊆ B1. If we
now have Ak ⊆ Bk for some k ≥ 1, this implies Ak+1 ⊆ Bk+1: Assume that
this were not true, i.e., that Ak ⊆ Bk, but there is an argument a ∈ Ak+1 with
a �∈ Bk+1. Then, a is acceptable with respect to Ak in AF ∗, but not acceptable
with respect to Bk in AF fix

S . We know that—since Ak+1 ⊆ S—no possible attacks
against Ak+1 (and in particular, against a) are included in AF fix

S and all possible
defending attacks by arguments in Ak+1 against arguments outside of S are
included in AF fix

S . Further, no element of S attacks a in AF fix
S , since a ∈ S

and S is complete in AF fix
S . Therefore, a is acceptable with respect to Ak in

AF fix
S ; otherwise it could not be acceptable with respect to Ak in AF ∗. Now,

the only way for a to not be acceptable with respect to Bk in AF fix
S is if there

were some b ∈ Bk�Ak that necessarily attacks a. Then there would have to be a
defending attack by an argument d ∈ Ak against b in AF ∗, since a is acceptable
with respect to Ak in AF ∗. This implies that b �∈ S, since S is conflict-free in
AF ∗. Finally, since (d, b) is a possible (or even a necessary) defending attack by
an element of S against b �∈ S, (d, b) ∈ Rfix

S holds by construction of the fixed
completion, which contradicts that Bk is admissible in AF fix

S . Therefore, a must
be acceptable with respect to Bk in AF fix

S , which proves that Ak+1 ⊆ Bk+1.
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Now we prove that Bi ⊆ S for all i ≥ 0: Assume that Bi �⊆ S for some
i ≥ 0. Then it also holds that Gfix

S �⊆ S for the grounded extension Gfix
S of AF fix

S .
It further holds that S ⊂ Gfix

S , since there exists a j ≥ 0 such that S ⊆ Bi

for all i ≥ j, as established before. However, this contradicts the fact that S
is complete in AF fix

S , since the grounded extension Gfix
S of AF fix

S is its least
complete extension with respect to set inclusion and the complete set S cannot
be a strict subset of Gfix

S . This completes the proof. �
Analogously, the unfixed completion is a critical completion for the complete

and the grounded semantics. Due to limitation of space, the proof of Lemma 5
is omitted.

Lemma 5. Let AF = 〈A ,R+,R−〉 be an attack-incomplete argumentation
framework, S ⊆ A , and let AF unf

S be the unfixed completion of AF for S.
(1) S is a necessarily complete extension of AF if and only if S is a complete
extension of AF unf

S . (2) S is a necessarily grounded extension of AF if and only
if S is the grounded extension of AF unf

S .

Finally, our results allow us to establish that s-AttIncPV and s-AttIncNV
are in P for the complete and grounded semantics.

Theorem 2. For s ∈ {cp,gr}, both s-AttIncPV and s-AttIncNV are in P.

Proof. Lemma 3 provides polynomial-time constructability for the fixed and
unfixed completion. Given a completion, s-Verification can be solved in poly-
nomial time, and Lemmas 4 and 5 imply that the answer to, respectively,
s-AttIncPV and s-AttIncNV is the same as that to s-Verification for the
respective completion. �

4.3 Verifying Preferredness

As mentioned above, the Verification problem for the preferred semantics is
coNP-complete. For pr-AttIncPV and pr-AttIncNV, we have the following
results.

Theorem 3. The problem pr-AttIncPV is in Σp
2 and coNP-hard, and

pr-AttIncNV is coNP-complete.

Proof. In pr-AttIncPV one has to check whether, given an attack-incomplete
argumentation framework AF = 〈A ,R+,R−〉 and a set S ⊆ A, there is a
completion AF ∗ = 〈A,R∗〉 such that S is preferred in AF ∗. To check whether
S is preferred in AF ∗, one has to check whether for all sets S′ ⊆ A with S ⊂ S′

it holds that S is an admissible extension and S′ is not an admissible extension.
Thus this problem is in Σp

2 .
To see that pr-AttIncNV is in coNP, consider the complementary problem.

Here one has to check whether there is a completion AF ∗ of the given attack-
incomplete AF such that the given set S is not preferred. To see this, it is enough
to check whether there is a strict superset of S that is admissible or whether S
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Table 2. Overview of complexity results both in the standard model (s-Verification)
and in the attack-incomplete model of this paper (s-AttIncPV and s-AttIncNV)

s Verification AttIncPV AttIncNV

cf in P in P [10] in P [10]

ad in P in P (Theorem 1) in P [10]

st in P in P (Theorem 1) in P (Theorem 1)

cp in P in P (Theorem 2) in P (Theorem 2)

gr in P in P (Theorem 2) in P (Theorem 2)

pr coNP-complete coNP-hard, in Σp
2 (Theorem 3) coNP-complete (Theorem 3)

itself is not admissible. Since admissibility can be checked in polynomial time, the
complement of pr-AttIncNV is in NP and hence pr-AttIncNV is in coNP.

On the other hand, coNP-hardness for both problems follows by a
direct reduction from the original pr-Verification problem, which is coNP-
complete [15]. For a given instance (〈A ,R〉, S) of pr-Verification, the con-
structed instance of both pr-AttIncPV and pr-AttIncNV is (〈A ,R, (A ×
A )�R〉, S). The only completion of 〈A ,R, (A ×A )�R〉 is 〈A ,R〉. Now, it is
easy to see that (〈A ,R〉, S) ∈ pr-Verification if and only if (〈A ,R, (A ×
A )�R〉, S) ∈ pr-AttIncPV, which in turn is equivalent to (〈A ,R, (A ×
A )�R〉, S) ∈ pr-AttIncNV. �

5 Conclusions and Open Questions

We have investigated argumentation frameworks in a setting where we don’t
have full knowledge of the attacks. We adapted the s-Verification decision
problems with respect to notions of possibility and necessity to fit the model of
Cayrol et al. [10], and we analyzed their complexity for the fundamental seman-
tics admissibility, stability, completeness, groundedness, and preferredness. This
may be useful to predict those sets of arguments that will be “good” solutions
once all attacks are known eventually.

Table 2 summarizes our results, and also gives the previously known results
for argumentation frameworks without uncertainty that are due to Dimopoulos
and Torres [15], Dung [17], and Dunne and Wooldridge [18], as well as the results
for incomplete argumentation frameworks provided by Cayrol et al. [10]. We have
shown positive results (characterizations) for all considered semantics except
preferredness, for which the exact complexity in the case of possible verification
remains open. As a task for future work, we propose to generalize other deci-
sion problems like s-Credulous-Acceptance, s-Skeptical-Acceptance, s-
Existence, and s-Nonemptiness to fit the model of attack-incompleteness
and analyze their complexity. Additionally, one could have a closer look at other
semantics like semi-stable, ideal, or prudent semantics (see [18] for the definition
of these decision problems and semantics).
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