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1 Introduction

Elections are important not just in the human world. They also can function as an important
way of aggregating the preferences of (often electronic) agents, in our world that is increas-
ingly networked and in which people and institutions will increasingly be spoken for by
automated agents.

In the field of multiagent systems, voting has been suggested for tasks as varied as, for
example, recommender systems, collaborative spam filtering, and planning [9,13,21]. And
not surprisingly, the study of the computational properties of voting systems has been an
exceedingly active area within computational social choice.

In particular, various types of manipulation, electoral control, and bribery in voting have
been classified in terms of their computational complexity (see [15,19]). This paper focuses
on voter control, amodel introduced byBartholdi, Tovey, andTrick [5],where a chair attempts
to alter the outcome of an election via changing its structure by deleting, adding, or partition
of voters. These types of control seek to model such real-world behaviors as targeted vote
suppression, bring-out-the-vote drives, and districting/gerrymandering. Bartholdi, Tovey, and
Trick’s paper was in the bounded-rationality spirit of Simon [40], and was in part making the
point that computational complexity is important in decision-making.

There have been many papers analyzing the (non-online) control complexity of election
systems, and seeking to find natural systems that make many types of control attack diffi-
cult. See, for example, the surveys [15,19], the book chapters [4,20,29], and the references
therein. Control is such a natural model that it has also been applied in settings quite differ-
ent than standard elections, e.g., it has been applied in judgment aggregation [2] and group
identification [45]. To the best of our knowledge, all previous work on control (see, e.g.,
[5,11,12,18,23,24]) takes for granted that the chair has full knowledge of all the voters’
preferences and that all votes are cast simultaneously.1 However, in many settings voters
vote sequentially and the chair’s task in such a setting may often be quite different: Knowing
only the already cast votes but not the future ones, the chair must decide online (i.e., in that
moment) whether there exists a control action that guarantees success, no matter what votes
will be cast later on. We introduce a framework to model online voter control in sequen-
tial elections. Our approach is inspired by the area of “online algorithms” [1]—algorithms
running and performing computational actions based only on the input data seen thus far.

In our framework of online voter control, the chair’s task stated above is based on a “maxi-
min” idea (although here, due to the time effects, that can involve more than two quantifiers;
this hints at a “game-like” flavor, and that is further explored in our Preliminaries section, see
also footnote 3), a typical online-algorithmic theme; in that framing of the chair’s task we
are following the approach that has been used for online manipulation and online candidate
control [25,28]. Note that another central online-algorithmic theme, a strictly numerical
ratio approach to so-called “competitive analysis,” would not apply very naturally here; the
reason is that in its general setting, voting (in social-choice theory) is most typically based
on an ordinal notion of preferences, and those don’t convey cardinal strength-of-affinity
information regarding the outcome (that is, they don’t provide any fixed numerical valuation
of different outcomes, e.g., if our preference is a > b > c > d that does not provide a
numerical value to the relative desirability to us of c winning versus d winning). (For some

1 An exception is a paper by Fitzsimmons et al. [16] that is, regarding their earliest appearing versions, more
recent than the present paper, and studies a mixed model involving both a chair and manipulators, in which
the manipulative voters set their votes after control action by the chair. (We mention in passing that if one
looks beyond the study of control, uncertainty appears in many election, selection, and preference-aggregation
settings, see, e.g., the book [39] and, as one among many possible examples, the work of Mattei et al. [33].)
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specific voting systems such as so-called scoring systems one can interpret them as giving
cardinal information, and we commend as an interesting open issue a future, general control-
complexity study for such systems in terms of a competitive-ratio analysis; see [35], which
takes that approach for the issue of selecting a bundle of goods.) Sequential (or otherwise
“dynamic”) voting has been studied in other contexts as well, e.g., from a game-theoretic
perspective as “Stackelberg voting games” [44] (see also [8,10,41]), or using an axiomatic
approach [43] or Markov decision processes [37]. None of this work has considered the issue
of voter control.

What our results show is that such online control problems can be much harder than in the
standard (non-online) case.We show that for certain election systems, evenwith efficientwin-
ner problems, online control by deleting, adding, or partitioning voters is PSPACE-complete,
even if there are only two candidates. In addition, we obtain completeness for coNP in the
deleting/adding cases with a bounded deletion/addition limit. We do this by establishing a
complexity-theoretic result (Theorem 3) that is of interest in its own right: Polynomial-time
alternating Turing machines that on each accepting path make a constant number of “Yes”
guesses accept only coNP languages, and in fact this completely characterizes coNP.We also
show that for plurality, online control by deleting or adding voters is in P, and for partitioning
voters is coNP-hard.

The comments made in the previous paragraph put into context our investigation, and its
framing, but let us make this explicit: This paper is primarily trying to discover the limits
of complexity that can possibly exist for any election system (that has a polynomial-time
winner problem) regarding these problems—even if realizing the limits involves an artificial
system. We do so because to understand a problem one needs to understand the complexities
that it can take on. For example, note that knowing that a problem is PSPACE-complete for
some systems having polynomial-time winner problems makes it clear that we should not be
seeking a result of the form: For all systems having polynomial-time winner problems this
problem is in NP. But, despite discovering that high complexities can occur, one naturally can
then hope to look at specific, popular systems to show that they may take on far lower levels
of complexity, as we do here for the most important of all systems, plurality. (We say that
plurality is the most important of all election systems as it is in extremely widespread use,
both in political elections and across a broad range of other contexts.) And in our conclusion
section we commend the study of additional concrete systems as a natural, important future
direction. (These comments mostly focus on the issue of the role of election systems in our
results; please see also the final two paragraphs of the Preliminaries section for discussion
somewhat related to this and, far more so, discussion related to the use of and role of maxi-
min.)

2 Motivation

The coming sections will give our definitions, results, and proofs. However, before that, the
present section will very informally present some motivation and examples. In particular, we
give example settings in which it is natural to study sequential action, in which the election’s
“chair” has a use-it-or-lose-it ability to do addition/deletion/partition-choice for each voter
as the voter votes, and the chair knows the votes of the voters seen so far, but not of future
voters. Of course, theoretical models don’t capture the many interactions and subtleties of the
real world, and so our models don’t perfectly capture the full richness of even these sample
situations. Nonetheless, we feel that for many cases, such as those we are about to mention,
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the theoretical models we develop in this paper are far closer to capturing the real-world
situation than are existing models of simultaneous voting or even existing models where
votes are sequential but all voters’ preferences are known ahead of time.

As a concrete example (and let us for the moment not worry about what the particular
election system is), consider a College faculty meeting at which, going right around the room,
the faculty members hand their handwritten paper ballots to the Dean, who then passes them
on to her administrative assistant, who quietly adds them to the totals he is keeping. But let us
further assume that theDean is a shifty person, and can, for a certain number of ballots, slip the
piece of paper into her pocket after reading the vote, without that being noticed, and without
the people in the room being likely to notice that there aren’t quite enough votes in the totals
(let’s suppose it is a big college). And the question is, given that we are at some particular
point in going around the table (and know what votes have been cast so far and what actions
the Dean—or whoever was standing in for her—has taken so far): Can the Dean ensure, using
at most her remaining amount of vote-to-pocket shifting, that the winner(s) of the election
will include at least one of the alternatives she favors? This setting loosely corresponds to
our sequential version of control by deleting voters. For vividness, our examples are about
humans voting and a human chair (in the above, the Dean), and in the case just given, paper
ballots. However, our model applies also to more electronically focused cases of preference
aggregation, e.g., the “Dean” in the above example could be a doctored voting machine that
can only suppress so many ballots before seriously risking detection.

The above example is about deleting voters, but there are also natural examples for adding
or partitioning voters. For partitioning voters, imagine that a school’s undergraduate admis-
sions office is going to use a panel, whose members will each be assigned to one of two
faculty committees, to vet applying students (perhaps with the committees purportedly look-
ing for different things, e.g., one is looking for traditional smartness and the other is looking
for unusual levels of passion and creativity), with all applicants’ folders given to both com-
mittees, and with each committee using voting to select its favorite proposals, and then with
only the winners of those two vetting elections moving on to a final election in which all the
panel members vote. Suppose a particular admissions office staff member (who is the chair
in this example), with all the faculty members lined up and coming into the room, as each
faculty member steps to the doorway briefly chats with the faculty member well enough to
discern the likely votes he or she will cast, and then right there assigns the person to either the
smartness committee or the passion committee. If the admissions staff member does so with
the goal of ensuring that at least one of a certain set of students (perhaps the students who
are great football quarterbacks, or the students whose parents might fund a new admissions
building) will be admitted, that very loosely put would be captured by our sequential version
of control by partition of voters.2 For adding voters, a natural model might be a political
candidate (who is the chair in this example) going door to door through her district in a preset
order, and knowing from public records which voters are registered voters and which are not,
and at each door meeting and learning the voter’s preferences among the candidates, and then
for those voters who are not registered deciding whether to use charisma to convince them
to register and vote, with the limitation that the candidate has only so much charisma to use.

The above are a few very informal examples of settings where sequential action is natural,
and one knows the votes cast so far but not those to be cast in the future (except who will be
casting them and in which order). Let us finish this informal section by briefly giving a mini-
example of the flavor of the goal we have for our chairs, and how that affects their actions.

2 Actually, as our previous example suggested, our model is a bit more flexible and allows one to ask such
questions starting at an intermediate point at which some actions have already been taken, potentially by a
different admissions staff member.
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We are assuming that chairs are very pessimistic: What a chair wants to know is whether
there is some action she can take at the given moment so that one of her preferred candidates
will win no matter what the value is of all the currently unknown-to-her future votes—but
assuming that her own future decisions are (of course) aimed at supporting her goal. To make
this more concrete, let us discuss the most important real-world election system: plurality.
In our addition-of-voters example above, suppose the candidate going door to door has only
one preferred candidate in the election, namely, herself. Then it is quite clear and simple
what she should do. Until she runs out of charisma, she should for each unregistered voter
she meets for whom she is the favorite candidate expend her charisma to have that person
become a registered voter. That is an “operational” approach that would work perfectly. But
moremust be said. The question our pessimistic candidate (and our decision problems) wants
answered at each point is whether, whatever the preferences still to come after the current
point are, that candidate will win. And it is also clear how to judge that. The candidate, as
she starts speaking with a given unregistered voter who likes our candidate the most (we can
similarly describe how to reason in the other cases), reasons as follows: I need to assume
that all future voters (whose preferences I don’t currently know!) concentrate their votes on
a candidate other than me who currently has the most votes (in the tally I have been building
in my canvas so far), and that I use my charisma to (if it is not expended) add the current
unregistered voter, and then I suppress those hypothetical, unregistered, against-me voters,
and would that leave me a winner of this election? If the answer is yes, then the candidate
should be very happy, as she knows she can guarantee herself victory as long as she doesn’t
later do anything overtly stupid with her charisma.

The example we just gave is in effect explaining why it holds that (so-called constructive)
control by adding voters is in polynomial time for sequential plurality elections. Now, one
might assume that plurality is such a simple system that for all types of sequential control
we will obtain polynomial-time algorithms. However, as Theorem 9 we will show that that
is not the case (unless P = NP). In particular, Theorem 9 is about sequentially partitioning
voters—the control setting we described above in our example about college admissions.
Theorem 9 states that for plurality both the constructive and destructive cases are coNP-hard.
The proof of that result is in effect giving a somewhat complex example of transforming
a coNP-complete problem, namely the complement of Hitting Set, into an election-control
instance about sequentially partitioning voters in a plurality election.

3 Preliminaries

We assume a good grasp of standard complexity-theoretic notions such as the complexity
classes P, NP, coNP, and PSPACE, polynomial-time many-one reductions (≤p

m), ≤p
m-

hardness, and≤p
m-completeness [30,36].A standardNP-complete problem is the satisfiability

problem (SAT) from propositional logic, a standard coNP-complete problem is the tautology
problem, and the quantified boolean formula problem (QBF) is a standard PSPACE-complete
problem.

We will later use the famous result, due to Chandra, Kozen, and Stockmeyer [7], that
PSPACE is exactly the class of languages that can be accepted in polynomial time by what
are known as alternating Turing machines. (Alternating Turing machines are, very loosely
put, much like nondeterministic Turing machines, except rather than being allowed only
existential branching nodes, they are allowed both existential and universal branching nodes.)
Such alternations have a very “game-like” feel to them, and indeed the generalized versions of
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such games as checkers [14], chess [42], and GO [32] are known to be complete for PSPACE.
Our paper’s setting also has a very game-like feel, with the chair in some sense playing against
whatever information potentially is going to be revealed, and we in fact will ourselves obtain
a number of PSPACE-completeness results. A standard fact about PSPACE that we will
tacitly draw on at a few points is that PSPACE = NP ⇐⇒ PSPACE = NP ∩ coNP; the
“if” direction follows from the fact that NP ∩ coNP ⊆ NP ⊆ PSPACE and the “only if”
direction follows from the fact that PSPACE is closed under (set-wise) complementation,
i.e., PSPACE = {L

∣
∣ L ∈ PSPACE}.

This paper provides both polynomial-time algorithms and NP-completeness results. The
latter are worst-case results, and so it is possible that for certain distributions heuristics
might do well (see [38] for a survey of this in the context of elections). We commend
this direction as an area for future research. However, such studies are quite dependent on
distributions, and by relatively recent work, it is known that for the uniform distribution
heuristic algorithms cannot asymptotically have subexponential error frequency on any NP-
hard problem unless the polynomial hierarchy collapses to (and indeed, slightly further than)
its third level [3,6,31]. (Note: An algorithm is said to have subexponential error frequency
if for every ε > 0 the number of errors the algorithm makes at length n is O(2nε

); see [31]
for a more detailed explanation.)

3.1 Voter control types in simultaneous elections

A pair (C, V ) is called a (standard or simultaneous) election if C is a set of candidates and
V a list of voters that all have cast their votes simultaneously. We assume that each vote
in V has the form (v, p), where v is the name of this voter and p is v’s (total) preference
order over C . For example, if C = {c, d, e} then (Bob, d > e > c) ∈ V indicates that Bob
(strictly) prefers d to e and e to c (or, to be more precise, it indicates that that is the ballot
Bob has cast).

The standard types of (constructive) voter control in simultaneous elections are as follows.
(These are as introducedbyBartholdi, Tovey, andTrick [5], except herewewill follow the now
more standard model—called the nonunique-winner model—of asking whether a candidate
can be made a winner, rather than their approach—called the unique-winner model—of
asking whether a candidate can be made the one and only winner.) An election system is a
mapping from elections (votes/candidates) to a winner set. Let E be a given election system.
In control by deleting voters (E -CCDV), given an election (C, V ), a distinguished candidate
c ∈ C , and a nonnegative integer k ≤ ‖V ‖, we ask whether there exists a set of at most
k voters from V such that c is an E winner of the election in which that set of voters is
removed. In control by adding voters (E -CCAV), we are given a candidate set C , a list V
of registered voters with preferences over C , a list V ′ of as yet unregistered voters with
preferences over C , a distinguished candidate c ∈ C , and a nonnegative integer k ≤ ‖V ′‖,
and the question is whether there exists a set of at most k voters from V ′ such that c is an
E winner of the election where the voters are that set and all of V . Finally, in control by
partition of voters, we are given an election (C, V ) and a distinguished candidate c ∈ C ,
and we ask whether V can be partitioned into two sublists, V1 and V2, such that c is an E
winner of the election (W1 ∪ W2, V ), where Wi for i ∈ {1, 2} is the (possibly empty) set
of winners of subelection (C, Vi ) that have survived the tie-handling rule used and by V
here we implicitly mean V masked down to just those candidates in W1 ∪ W2. Of the two
tie-handling models introduced by Hemaspaandra et al. [23] we focus on the ties-promote
(TP) model only, where all winners of a subelection proceed to the runoff, since that model
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fits more naturally with the nonunique-winner model in which we will define our online
control problems. The resulting problem is denoted by E -CCPV.

The destructive variants of these three problems, denoted by E -DCDV, E -DCAV, and
E -DCPV, are obtained by requiring that the distinguished candidate c is not a winner of the
election resulting from the control action at hand [23].

3.2 Online voter control in sequential elections

We study online voter control in sequential elections, where we assume that the voters vote
in order, one after the other, each expressing preferences over all the candidates. If u is the
current voter and C the given candidate set, an election snapshot for C and u is specified by
a triple V = (V<u, u, Vu<), where the earlier voters V<u have already cast their votes, each
a preference order over C , and now it is u’s turn to cast a vote, and the future voters Vu< will
cast their votes in the order listed. (V<u and u of course list the votes cast and who cast them,
but Vu< just gives the order of the voters following u.) This snapshot approach is natural for
studying online attacks on elections, and was used previously to study the different type of
attack known as online manipulation in sequential elections [27,28].

We now define our notions of online voter control for the standard voter control types
stated above, and the related problems. They all will start from a basic online voter control
setting (an OVCS, for short), augmented by appropriate additional information according to
the control type at hand. A basic OVCS (C, u, V, σ, d) consists of a set C of candidates, the
current voter u (which isn’t strictly needed here, as u is clearly singled out within V anyway),
an election snapshot V for C and u, the chair’s preference order σ on C , and a distinguished
candidate d ∈ C . Let E be a given election system and let WE (C, V ) denote the E winner set
of (standard) election (C, V ). For each online voter control type we will define, the question
the chair faces is: Does there exist a control-action choice of our considered type regarding
the current voter (e.g., whether or not to delete u) such that if the chair takes that action, then
no matter what votes the remaining voters after u cast, the chair’s goal can be reached by the
current decision regarding u and by using the chair’s future decisions (if any), each being
made using the chair’s then-in-hand knowledge about what votes have been cast by then?3

By the chair’s goal we mean to ensure WE (C, V ′) ∩ {c ∣
∣ c ≥σ d} �= ∅ for each possible

ultimate election (C, V ′) (i.e., each V ′ is a possible vote list resulting from the control type
at hand after all decisions have been made by the chair and all voters have cast their votes) in
the constructive case, and to ensure that WE (C, V ′)∩{c ∣

∣d ≥σ c} = ∅ in the destructive case
(i.e., that neither d nor any candidate the chair likes even less than d is a winner).4 Note that

3 Note that this maxi-min-inspired (but with more quantifiers) approach is really about alternating quantifiers.
We are asking if there exists a current action of the chair, such that for all potential revealed vote values that
come between now and the next time the chair has to decide on an action, there exists a next action by the
chair, such that for all . . . . . . the chair reaches her goal.
4 Why do we provide an ordering σ rather than just providing as a list the set of candidates who are good
enough to count as reaching our goal? For the decision-problem version of online voter control, which is our
formulation here, providing such a set would be just as good. But by making σ a part of the input, we make the
model compatible, for the future, with the interesting optimization problem of trying to find the most preferred
candidate within σ for which the chair can ensure that there is among the winner set one of the candidates in
the segment from that candidate to the top candidate in σ .
Also, to avoid any confusion, we note that in our “d chooses an upper (constructive case) or lower (destructive
case) segment of the candidates” approach, the non-online version’s situation that the destructive goal “oppos-
ing” a constructive goal is specified in the same way not longer holds (although we could have defined things
in a less natural way so that that would hold). That is, in the non-online setting, the distinguished candidate
d in the constructive case is saying who the chair wants to win, and in the destructive case is saying who the
chair wants to not win; d in one case is defined in the problem definition to denote the beloved candidate
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the conditions WE (C, V ′)∩{c ∣
∣c ≥σ d} �= ∅ and WE (C, V ′)∩{c ∣

∣d ≥σ c} = ∅ defining the
chair’s goal have the flavor, give or take the fact that we are focusing on a top segment of σ , of
the nonunique-winner model, e.g., as long as WE (C, V ′)∩{c ∣

∣c ≥σ d} �= ∅we call it success
even if more than one candidate ties as winner. To formally define our problems, it remains to
specify for each control type the information by which the basic OVCS is augmented. What
kind of decisions the chair is to make in the course of a sequential election will always be
clear from the control type at hand (e.g., whether or not to delete a voter in “online control
by deleting voters”).

Let B = (C, u, V, σ, d) be a given basic OVCS. For online control by deleting voters, B
is augmented by the following additional information: A nonnegative integer k (the deletion
upper bound); for each voter v before u, there is a flag saying whether v was deleted and
the vote cast by v (if not deleted)—at most k voters can be marked as deleted for the input
to be syntactically legal; and the vote the current voter u will cast (if not selected for dele-
tion). We denote these problems by online-E -CCDV (constructive) and online-E -DCDV
(destructive). (We certainly could equivalently formulate the problem in a way that masks out
all earlier deleted voters, and so removes the need for the flagging; but we prefer the above
version since it allows the actual history of the voting situation to be part of the instance.)

For online control by adding voters, B is augmented by the following additional informa-
tion: A nonnegative integer k (the addition upper bound); each voter v in V has a flag saying
if v is unregistered (i.e., can be added) or registered—u must be unregistered; each unreg-
istered voter v before u has another flag saying if v was added—at most k voters may have
that flag set in any syntactically legal input; the vote cast is given for each registered or added
unregistered voter before u; and also given is the vote u will cast (if it is added). We denote
these problems by online-E -CCAV (constructive) and online-E -DCAV (destructive).

For online control by partition of voters, B is augmented by the following additional
information: Each voter v before u has a flag saying which part of the partition v was
assigned to (“left” or “right”) and the vote cast by v, and also u’s vote is given. We denote
these problems by online-E -CCPV (constructive) and online-E -DCPV (destructive). As
a reminder, the two preliminary elections are conducted under the convention that “ties
promote” (i.e., all winners of the preliminary elections move forward to the final election).

A natural worry about our maxi-min approach to online voter control is that it is always
possible that all the future voters are hostile to one’s goals. And in that case, one may be,
depending on the election system, powerless to reach one’s goal in the worst case, and so
the maxi-min outcome is easily seen to be failure to reach one’s goal. This worry exists in a
weaker form for online manipulation and online bribery; that is because, for those, if one is
allowed almost no vote-changing one is in many cases obviously in trouble, at least in those
settings where one can do whatever one wants to those votes one does manipulate or bribe.

Footnote 4 continued
and in the other case is defined to denote the despised candidate. However, in our case, we are giving an
order σ , and it would be perverse and confusing to have > mean one thing for constructive and another for
destructive. And so, as we have defined things, if the chair’s stated ordering σ is v1 > v2 > v3 > v4 > v5
and d = v2, in the constructive case that means that the chair wants at least one of v1 or v2 to win. To state
the destructive-case goal—which in some sense is the “flip” of that constructive-case goal—of having neither
v1 nor v2 be a winner, one would give as the chair’s ordering v5 > v4 > v3 > v2 > v1 and d = v2, since
this specifies that v2 and v1 are the chair’s two most despised candidates and are the ones the chair wants to
prevent from being winners.
These comments simply refer to the way various “opposite” goals happen to be expressed. None of the above
is saying that the constructive problem (viewed as a set) and the destructive problem (viewed as a set) are
each other’s complements. Due to the quantification involved regarding the actions being taken such as by the
chair, that is not true.
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However, in control one doesn’t get to set the value of a single vote, and that is quite extreme
indeed.

This is a valid worry, but there are some things that keep it in perspective. Primarily,
our paper is trying to find out the very greatest complexity that online control in sequential
elections can ever have (when restricted to election systems having polynomial-time winner
problems). And so we can look at election systems that sidestep the above worry, due to
their properties simply not matching the intuition above (which assumed that we are using
an election system in which having a lot of bad-for-us votes results in a bad-for-us outcome).
In effect, we are seeking to understand the limits of behavior, in order to set a bounding box
on the behaviors that can be realized. Of course, for many natural election systems, the effect
mentioned in the previous paragraph will hold, and for many inputs that fact can be exploited
to help achieve polynomial-time algorithms for the control problem; indeed, in this paper
itself, we give examples of achieving polynomial-time algorithms for the most important
of election systems: plurality. Of course, problems may start with some votes already cast,
and this may itself make for interesting “endgame” decision issues. We also very much
hope further studies will be conducted employing a range of models, including ones beyond
maxi-min.

4 General upper and lower bounds

Theorem 1 For each election system E with a polynomial-time winner problem,5

online-E -CCDV, online-E -DCDV, online-E -CCAV, online-E -DCAV, online-E -CCPV,
and online-E -DCPV are in PSPACE.

Proof The upper bounds follow from the observation that each of these problems can be
solved by an alternating Turing machine in polynomial time, and thus by a determinis-
tic polynomial-space Turing machine, by the characterization due to Chandra, Kozen, and
Stockmeyer [7] that was mentioned in the Preliminaries.

Wewon’t provide the detailed programming of the alternating Turingmachines but, taking
online-E -CCDV as an example, the alternating Turing machine’s alternations will be that it
will ask whether there exists a (legal) decision by the chair at the current point, such that for
every (legal) next revelation as to voter preference, there exists a (legal) decision by the chair
at that point, such that for every (legal) next revelation as to voter preference, ...., such that
the chair’s goal is obtained. This is an at most polynomial-in-the-input-size long sequence
of alternating existential and universal blocks—precisely the action of a polynomial-time
alternating Turing machine. ��

Theorem 1 settles all general (i.e., regarding any voting system for which winner determi-
nation is easy) upper bounds for our online voter control problems. We now turn to exploring
their lower bounds.

4.1 Control by deleting and by adding voters

Theorem 2 There exist election systems E and E ′ with polynomial-time winner problems
such that online-E -CCDV, online-E -CCAV, online-E ′-DCDV, and online-E ′-DCAV are
PSPACE-complete, even when limited to two candidates.

5 The statement of Theorem 1 holds even for election systems whose winner problems are in PSPACE.
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Proof This is a rather difficult construction, and those not very comfortable with the con-
struction of reductions showing PSPACE-hardness might want to skip over it, especially
during a first reading. But let us at least quickly, in this paragraph, describe very informally
what is going on in the proof. Let us take online constructive control by deleting voters as
our example here. The key idea is to take a problem that is already known to capture the full
power of PSPACE (in our case below, a problem called QBF′, which is a rather technical
variant of the most famous PSPACE-complete problem, QBF), and show how we can create
an election system, having a polynomial-time winner problem, such that the online construc-
tive control by deleting voters problem for that election system can in effect solve QBF′
problems. To do this, we create an election system that itself internally interprets its own
input—the election instance (C, V )—in a way that crosses the gap between formulas and
elections. This does involve a rather complex interpretation scheme. The key things being
done below thus are the creation of such an election system (E ), and the definition of the
transformation (in particular, a polynomial-time many-one reduction) that converts a ques-
tion of the form “Is F in QBF′?” into an election instance that under that election system,
for the online constructive control by deleting voters problem, is going to in effect perfectly
capture the issue that “F ∈ QBF′?” is framing.

We define election system E as follows. We will describe what that election system does
on election instance (C, V ). E interprets—in some fixed, natural encoding—the lexicograph-
ically least candidate name in C as a boolean formula, �, whose variable names must be the
strings x1, x2, . . . , x2� for some �, where x2� actually appears in � (the other variables don’t
have to; no variables other than x1, x2, . . . , x2� are allowed). If these syntactic requirements
fail to hold, everyone loses in E . Otherwise, if any two voters in V have the same name,
everyone loses in E . Otherwise, order the voters in V lexicographically by name of the voter,
and let v1, v2, . . . , vz be the voter names in this order. If z < 2� or if there are fewer than two
candidates, everyone loses in E . Otherwise, if for some odd i , 1 ≤ i ≤ 2�−1, the two lowest
order bits of vi are not 00 or 01, or if for some even i , 2 ≤ i ≤ 2�, the two lowest order bits of
vi are not 10 or 11, everyone loses in E . Otherwise, assign the variables of�(x1, x2, . . . , x2�)
as follows. For each odd i , 1 ≤ i ≤ 2�− 1, set xi to true if the two lowest order bits of vi are
01, and set xi to false otherwise (i.e., the two lowest order bits of vi are 00). For each even i ,
2 ≤ i ≤ 2�, set xi to true if the name of the least preferred candidate in the vote of vi is
lexicographically less than the name of the next to least preferred candidate in the vote of vi ,
and set xi to false otherwise. If this assignment satisfies�, everyone wins in E , and otherwise
everyone loses. This ends the specification of E . Since a boolean formula whose variables
have all been assigned can be evaluated in polynomial time, E has a polynomial-time winner
problem.

By Theorem 1, online-E -CCDV is in PSPACE. To show PSPACE-hardness of
online-E -CCDV, we ≤p

m-reduce the PSPACE-complete problem QBF′, a variant of QBF,
to it. (Why does this show it is PSPACE-hard? A standard approach in complexity is to
show that a problem A is PSPACE-hard by ≤p

m-reducing a known PSPACE-complete—or
even a known PSPACE-hard—problem to A. Due to the transitivity of ≤p

m , building that
one reduction establishes that every set in PSPACE ≤p

m-reduces to A, i.e., it shows that A
is PSPACE-hard.) QBF′ is the set of boolean formulas of the form F(x1, x2, . . . , x2�), for
some �, such that the variable x2� appears in F , all variables appearing in F are from the
variable name collection “x1”, “x2”, …, “x2�”, and

(∃b1) (∀b2) · · · (∃b2�−1) (∀b2�) [F(x1 := b1, x2 := b2, . . . , x2� := b2�) evaluates to true],
where bi ∈ {0, 1} and xi := bi means that variable xi is set to true if bi = 1, and is set to
false if bi = 0, for 1 ≤ i ≤ 2�.
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Let F(x1, x2, . . . , x2�) be a given instance of QBF′, where x2� explicitly appears in F . (If
our input is syntactically incorrect, we map it to a fixed no-instance of online-E -CCDV.)We
construct from F an instance of online-E -CCDV, consisting of a basicOVCS (C, u, V, σ, d),
augmented by the additional information of online control by deleting voters, as follows.
Define C = {a, b}, where a encodes F (in our fixed, natural encoding of boolean formulas)
and b is the string lexicographically immediately following a; the current voter is u = v1; V
will be specified below; the chair’s preference order is a >σ b; for specificity, we let d = a be
the distinguished candidate (though that does notmatter, as all candidateswin or all lose inE );
the deletion limit is k = �; and a vote a > b to cast for u if not deleted (again, the vote doesn’t
matter, as u = v1 will specify an assignment to x1 by her name, not by her vote). There are
(3/2)·2� = 3�voters inV such that the nameof the i th voter,vi , is the binary stringuiwi ,where
ui is the binary representation of i andwi = 00 if i ≡ 1 mod 3,wi = 01 if i ≡ 2 mod 3, and
wi = 10 if i ≡ 0 mod 3, 1 ≤ i ≤ 3�. This completes the description of our ≤p

m-reduction
from QBF′ to online-E -CCDV, which clearly can be computed in polynomial time.

We claim that F ∈ QBF′ exactly if the chair’s goal can be reached by at most k deletions
of voters. Why? By the definition of E , everyone loses unless our k = � deletions are used on
exactly one of v3i−2 and v3i−1, for each i , 1 ≤ i ≤ �. No v3i , 1 ≤ i ≤ �, can be deleted if
there is to be a winner. And the “exactly one of v3i−2 and v3i−1” choices, 1 ≤ i ≤ �, specify
an assignment of truth values to the odd-numbered variables: For each i , 1 ≤ i ≤ �, x2i−1 is
set to true if v3i−2 is deleted and v3i−1 is not, and is set to false if v3i−1 is deleted and v3i−2

is not. On the other hand, for each i , 1 ≤ i ≤ �, the truth value of x2i is specified by the vote
of voter v3i , since after these � deletions, v3i will be the 2i th voter name in the lexicographic
order. It follows that the chair’s goal can be reached by at most k deletions of voters exactly if
(∃b1) (∀b2) · · · (∃b2�−1) (∀b2�) [F(x1 := b1, x2 := b2, . . . , x2� := b2�) evaluates to true].
In light of the definition of QBF′, that is equivalent to saying that the chair’s goal can be
reached by at most k deletions of voters exactly if F ∈ QBF′. And that is precisely what this
paragraph was seeking to establish.

PSPACE-hardness of online-E -CCAV for the election system E defined above can be
shown via essentially the same ≤p

m-reduction from QBF′. The only difference is that we
now map the given QBF′ instance F to an instance of online-E -CCAV, which is defined
exactly as the online-E -CCDV instance constructed above, except that all voters vi with
i ≡ 0 mod 3 are specified as registered voters, and all other voters are unregistered. The
correctness argument is analogous.

The destructive cases can be shown analogously, by modifying the election system E
defined above as follows, yielding our modified system E ′: Whenever everyone loses (wins)
in E , everyone wins (loses) in E ′. It follows from Theorem 1 and the above ≤p

m-reduction
from QBF′ that online-E ′-DCDV and online-E ′-DCAV are both PSPACE-complete. ��

For control by deleting or adding voters, the deletion or addition limit k is—both in
the non-online case and in our online definition (which is what is used in Theorem 2)—
part of the problem instance. To better understand the source of the tremendous level of
computational hardness Theorem 2 showed that these problems can have, let us now consider
restrictions of these problems in which the deletion or addition limit is bounded by a constant.
For a given election system E and a fixed k, let online-E -CCDV[k] be the restriction of
online-E -CCDV to those inputs whose deletion limit is at most k, and define the problem
variant online-E -CCAV[k] analogously. We will show in Theorem 4 that this change in the
definition—bounding the deletion/addition bound—brings the complexity of these problems
from PSPACE down to coNP. (In contrast, limiting the number of candidates to two was
shown by Theorem 2 to leave these two problems PSPACE-complete.)
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The coNP upper bound follows immediately from the following theorem about restricted
polynomial-time alternating Turing machines, which is of interest in its own right. If we
define the weight of a path of an alternating Turing machine to be the number of 1’s in the
existential guesses along the path, what Theorem 3 says is that the class of languages accepted
by polynomial-time alternating Turing machines whose accepting paths are weight-bounded
is precisely coNP.

Theorem 3 Let k ≥ 0. The class of languages accepted by polynomial-time alternating
Turing machines that satisfy the property that on each accepting computation path the number
of existential guesses on which the bit is guessed as 1 is at most k is precisely coNP.

Proof We will show this by induction on k.
The k = 0 case is precisely coNP. This is so simply because k = 0 fixes each existential

guess (namely, of choosing between 0 and 1) to be a guess choosing 0, which in effect makes
it not an existential guess at all.

To prove the inductive step, let k > 0 and let A be a language accepted by a polynomial-
time alternating Turingmachine that satisfies the property that on each accepting computation
path the number of existential guesses on which the bit is guessed as 1 is at most k. That is,
any path that contains at least k + 1 guessed 1’s in its existential guesses must have as its
(leaf) value Reject rather than Accept.6 We will show that A is in coNP.

Throughout this proof, all xi ’s and yi ’s are over {0, 1}, i.e., are bits.
Let B be a polynomial-time computable ternary predicate and let �(n) be a polynomial

such that for all x , x ∈ A if and only if

∀x1∃y1 ∀x2∃y2 . . . ∀x�(|x |)∃y�(|x |)

⎛

⎝B(x, x1 . . . x�(|x |), y1 . . . y�(|x |)) ∧
�(|x |)
∑

i=1

yi ≤ k

⎞

⎠ .

(To be perfectly clear about what x is in the displayed equation above, we mention again
that the above equation is capturing whether a string x is a member of A, i.e., whether
x ∈ A.) Such a polynomial, �, and predicate, B, exist, since we can add extra quantifiers with
dummyvariables tomake the quantifiers alternating andwe can always guess an existentially-
quantified dummy variable as 0.

We can rewrite the above as follows. For all x , x ∈ A if and only if

∀x1 (∀x2∃y2 ∀x3∃y3 . . . ∀x�(|x |)∃y�(|x |)
(

B(x, x1 . . . x�(|x |), 1y2 . . . y�(|x |)) ∧ ∑�(|x |)
i=2 yi ≤ k − 1

)

∨
∀x2 (∀x3∃y3 . . . ∀x�(|x |)∃y�(|x |)

(

B(x, x1 . . . x�(|x |), 01y3 . . . y�(|x |)) ∧ ∑�(|x |)
i=3 yi ≤ k − 1

)

∨
∀x3 (. . . ∀x�(|x |)∃y�(|x |)

(

B(x, x1 . . . x�(|x |), 001y4 . . . y�(|x |)) ∧ ∑�(|x |)
i=4 yi ≤ k − 1

)

∨
.
.
.

∀x�(|x |)
(

B(x, x1 . . . x�(|x |), 0�(|x |)−11) ∧ ∑�(|x |)
i=�(|x |)+1 yi ≤ k − 1

)

∨
B(x, x1 . . . x�(|x |), 0�(|x |)) . . . ))).

(Of course,
∑�(|x |)

i=�(|x |)+1 yi ≤ k − 1 is true, since k > 0 in the present case, and the sum is
an empty sum and so by convention evaluates to 0.) The long expression above is not quite in

6 Recall that each path of a polynomial-time alternating Turingmachine has as its individual (leaf) value either
Accept or Reject, and the overall action of the Turing machine is determined by the thought-experiment of
applying the existential and universal node actions of the machine to those leaf values, resulting in an Accept
or Reject at the root that determines the machine’s acceptance or rejection on the given input.
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the right form to apply the inductive hypothesis. In order to be able to do so, define language
C such that 〈x, x1 . . . xr 〉 ∈ C if and only if r ≤ �(|x |) and

∀xr+1∃yr+1 . . . ∀x�(|x |)∃y�(|x |)

⎛

⎝B(x, x1 . . . x�(|x |), 0r−11yr+1 . . . y�(|x |))∧
�(|x |)
∑

i=r+1

yi ≤k−1

⎞

⎠ .

Clearly C can be accepted by a polynomial-time alternating Turing machine that satisfies
the property that on each accepting computation path the number of existential guesses on
which the bit is guessed as 1 is at most k − 1. By the inductive hypothesis, C is in coNP.
Since x ∈ A if and only if

∀x1(〈x, x1〉 ∈ C ∨ ∀x2(〈x, x1x2〉 ∈ C ∨ ∀x3(〈x, x1x2x3〉 ∈ C ∨
. . . ∀x�(|x |)(〈x, x1x2x3 . . . x�(|x |)〉 ∈ C) ∨ B(x, x1 . . . x�(|x |), 0�(|x |)) . . . ))),

it follows that A is in coNP. (Why is it in coNP? Note that its complement is in NP
due to having a polynomial-length witnesses. Let N be a fixed NP Turing machine
accepting C . Our witness scheme for membership in A is: Guess an x1, . . . , x�(|x |) such
that B(x, x1 . . . x�(|x |), 0�(|x |)) holds and also guess for each of 〈x, x1〉, 〈x, x1x2〉, . . .,
〈x, x1x2 . . . x�(|x |)〉 an accepting path of N on that input.) ��
Theorem 4 For each k ≥ 0, the following hold:

1. (a) For each election system E with a polynomial-time winner problem,
online-E -CCDV[k] is in coNP. (b) There exists an election system E with a polynomial-
time winner problem such that online-E -CCDV[k] is coNP-complete, even when limited
to two candidates.

2. (a) For each election system E with a polynomial-time winner problem,
online-E -CCAV[k] is in coNP. (b) There exists an election system E with a polynomial-
time winner problem such that online-E -CCAV[k] is coNP-complete, even when limited
to two candidates.

Proof Sketch Parts 1(a) and 2(a) follow immediately from Theorem 3.
Now consider part 1(b). Even for k = 0 (and in effect so for all k, as those have within

them k = 0 as subcases we can map to) we claim that there is an election system E with a
polynomial-time winner problem such that online-E -CCDV[k] is easily shown to be coNP-
hard, namely by a ≤p

m-reduction from the coNP-complete tautology problem. The mapping
and E are inspired by the proof of Theorem 2: We use the lexicographically least candidate
name to be a proposed tautology and we use the voters as tests of various assignments to it
(if the assignment satisfies, everyone wins). So the problem can force the chair’s top choice
(candidate a, see the proof of Theorem 2) to win exactly if the formula is a tautology. As
in the statement and proof of Theorem 2, this reduction maps to outputs having only two
candidates.

The proof sketch for part 2(b) ( online-E -CCAV[k]) is similar to that of part 1(b). The
first (and current) voter in our reduction is unregistered (but with k = 0 she obviously cannot
be added), and the remaining voters are testing assignments to a proposed tautology and we
have only two candidates, just as in the above proof sketch for online-E -CCDV[k]. ��
4.2 Control by partition of voters

Theorem 5 There exist election systems E and E ′, whose winner problems can be solved in
polynomial time, such that online-E -CCPV and online-E ′-DCPV are PSPACE-complete,
even when limited to two candidates.
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Proof This proof is similar in flavor to the proof of Theorem 2, but since we now handle
control by partition of voters, there are some decisive differences.

The election system E is now defined as follows.

Case 1: There is a candidate named RoundOne, and no voter is named Marker. In this
case, everyone loses.
Case 2: There is a candidate named RoundOne and a voter named Marker. In this
case, interpret—in our fixed, natural encoding—the lexicographically least candidate not
named RoundOne as a boolean formula, �, whose variable names must be the strings
x1, x2, . . . , x2� for some �, and x2� must actually appear in � (the others do not have to,
but no variable other than x1, x2, . . . , x2� can appear in �). If this candidate is not of the
required syntactic form, exactly RoundOne wins. If the candidate set does not consist of
exactly RoundOne and the above candidate, then exactly RoundOne wins. If the voter list
consists of exactly 2�+1 voters such that one voter is namedMarker, one voter is named
v
yes
1 or vno1 , one voter is named v2, one voter is named v

yes
3 or vno3 , . . ., one voter is named

v
yes
2�−1 or vno2�−1, and one voter is named v2�, where all subscripts are given in binary, then
assign the 2� variables of � as follows. (If the voter list is not exactly that then exactly
RoundOne wins.) For each odd i , 1 ≤ i ≤ 2� − 1, set xi to true if there is a voter named
v
yes
i and to false if there is a voter named vnoi . For each even i , 2 ≤ i ≤ 2�, set xi to true
if the voter named vi has the property that in her preference order RoundOne is the top
choice, and otherwise set xi to false. If this assignment makes � true, then the candidate
not named RoundOne is the only winner, otherwise (exactly) RoundOne wins.
Case 3: There is no candidate named RoundOne. In this case, everyone wins.

This ends the specification of E . Clearly, E has a polynomial-time winner problem, since it
is just evaluating a fully specified and assigned boolean formula, and doing various syntactic
checks.

Our online control by partition of voters problems are all in PSPACE by Theorem 1. To
prove PSPACE-hardness, we again ≤p

m-reduce from the PSPACE-complete problem QBF′
defined in the proof of Theorem 2. Let F(x1, . . . , x2�) be a given QBF′ instance, where x2�
actually occurs in F . (If our input is syntactically incorrect, then map it to a fixed nonmember
of our target problem.) Our candidate set will be C = {RoundOne, a}, where a will in her
name encode F (without loss of generality, that will not form the string “RoundOne”), a will
be our distinguished candidate, our current voter will be u = ṽ0, the chair’s preference order
will be a >σ RoundOne, and there will be 3� + 1 voters who vote in order ṽ0, ṽ1, . . . , ṽ3�,
where ṽ0 is named Marker, and the remaining voters are named as follows:

voter ṽ1 ṽ2 ṽ3 ṽ4 ṽ5 ṽ6 · · · ṽ3�−2 ṽ3�−1 ṽ3�
name v

yes
1 vno1 v2 v

yes
3 vno3 v4 · · · v

yes
2�−1 vno2�−1 v2�

This ends our statement of the reduction. Why does it work?
If F ∈ QBF′, then

(∃b1) (∀b2) · · · (∃b2�−1) (∀b2�)

[F(x1 := b1, x2 := b2, . . . , x2� := b2�) evaluates to true], (1)

where the bi ∈ {0, 1} are truth assignments. So the partition that puts Marker and all voters
vi , i even, on one side, say into Vleft , and for each v

yes
i /vnoi pair, i odd, follows (1) by putting

v
yes
i into Vleft and vnoi into Vright if bi = 1, and vnoi into Vleft and v

yes
i into Vright if bi = 0

(and crucially note that the preference orders of the vi , i even, we will have seen in the
future can (in the future) effect the future partition choices), will by Case 2 have one first-
round election (namely, (C, Vleft)) in which a is the only winner. And in the other first-round
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election, (C, Vright), by Case 1 everyone, including RoundOne, loses. Thus, only a proceeds
to the second-round runoff election, where by Case 3 everyone wins, i.e., our distinguished
candidate a wins.

In the other direction, suppose F is syntactically correct, and it is possible by some
partition of voters to force “a or better” (so a) to be a winner. Since RoundOne is in both
first-round elections (so Case 3 cannot occur), the only way candidate a can be guaranteed
to even survive at least one first-round election is if we can guarantee that Case 2 is satisfied.
But that means that F ∈ QBF′.

Since our reduction can be computed in polynomial time, this shows that online-E -CCPV
is PSPACE-hard.

To show that online-E ′-DCPV is PSPACE-hard, wemodify the election system E defined
above as follows, yielding our modified system E ′: Most crucially, Case 2 of the election
system description changes to now making everyone lose if � evaluates to true under the
specified assignment, and if � evaluates to false (or there is any syntactic problem regarding
who is in the voter list) then everyone wins. Case 3 changes to now having everyone lose,
and Case 1 stays the same. The ≤p

m-reduction from QBF′ remains the same, except that the
chair’s preference order will now be reversed to RoundOne >σ a, and with these changes the
reduction can be shown to work correctly by arguments analogous to those in the constructive
case. ��

The above proof establishes that there are election systems, with polynomial-time winner
problems, for which constructive and destructive online control by partition of voters are
PSPACE-complete even when limited to two candidates. Can wemake do with one candidate
and still have PSPACE-hardness? The following result shows that if we could, then PSPACE
would equal NP ∩ coNP.7

Theorem 6 1. For each election system E with a polynomial-time winner problem, the
problems online-E -CCPVand online-E -DCPVwhen limited to one candidate are inNP.

2. There exist election systems E and E ′ with polynomial-time winner problems such that the
problems online-E -CCPV and online-E ′-DCPV, even when restricted to one candidate,
are NP-complete.

Proof We give the proof for the destructive case. For the first part, with one candidate, c,
every voter has the same preference as her full vote: c. So there is no sequentially revealed
information, as in our model we know the voter names (and their order but here that does not
matter) as part of our input. So we just in NP can guess every partition of the voters from u,
the current voter, onward, and see if one of those meets the chair’s destructive goal, “c does
not win.”

For the second part, membership in NP follows from the first part. As to NP-hardness, let
us ≤p

m-reduce from SAT. The election system, E ′, is defined as follows:
Case 1: If there are two or more candidates, everyone wins.
Case 2: If there is one candidate and that candidate’s name gives a syntactically correct
boolean formula ϕ that has, say, k variables, and there are exactly k voters, and if we set
the i th variable of ϕ to true exactly if 1 is the lowest order bit of the voter whose name
ranks i th in lexicographic order among the voters’ names, then ϕ is satisfied either by

7 Are elections with just one candidate ever interesting in the real world? We feel they sometimes are. For
example, a popular referendum—or for that matter a vote in a legislature on a bill—is essentially an up-or-
down vote on one “candidate.” So is a vote on whether to recall an elected official, or to impeach a judge, or
to ratify a person who has been nominated for a sports hall of fame.
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that assignment or by the bitwise complemented twin of that assignment, then everyone
loses.
Case 3: In all other cases (including syntactical problems), everyone wins.

The reduction SAT≤p
m online-E ′-DCPV is defined as follows. Given a boolean formula

F(x1, . . . , xk), where without loss of generality all variables actually appear in F , we con-
struct an online-E ′-DCPV instance with candidate set C = {c}, where c encodes F , the
voters are named (in binary) 1, 2, . . . , 2k and they vote in this order, u = 1 is the current
voter, the distinguished candidate is c, and the chair’s preference order σ is c. We claim that
c can be made not a winner if and only if F is satisfiable. We will now show that this claim
holds.

As to the “if” direction of the claim, if F is satisfiable then we can determine a satisfying
assignment by the partition choices we make among each voter pair (2i − 1, 2i), 1 ≤ i ≤ k,
by choosing exactly one per pair for the right-hand side of the partition, such that the left-hand
side of the partition has the bitwise complement of that same satisfying assignment. So, by
the definition of E ′, c will not be a winner in either first-round subelection, and so will not
even be in the final runoff election, which will have zero candidates, and so c will not be a
winner.

As to the “only if” direction of the claim, if c loses, by the election rule that proves that
(Case 2 in the definition of E ′), F is satisfiable.

The constructive case can be shown analogously.

Corollary 1 The following three statements are equivalent:

1. PSPACE = NP ∩ coNP.
2. There exists an election system E with a polynomial-time winner
3. problem such that online-E -DCPV is PSPACE-hard when restricted to one candidate.
4. There exists an election system E with a polynomial-time winner problem such that

online-E -CCPV is PSPACE-hard when restricted to one candidate.

Proof To show equivalence of the first two statements, suppose PSPACE = NP ∩ coNP. So
PSPACE = NP. The second statement now follows from the second part of Theorem 6. Con-
versely, by the second part’s hypothesis and the first part of Theorem 6, we have PSPACE ⊆
NP, which (since PSPACE = coPSPACE) is equivalent to PSPACE = NP ∩ coNP. The
equivalence of the first and the third statements is proven analogously. ��

The analogues of the destructive cases of both parts of Theorem 6 also hold when “online”
is removed, i.e., for the problem E -DCPV. In contrast, the constructive non-online analogue
of Theorem 6’s first part can be strengthened to a P upper bound. (Why can we get a P result
here but not in Theorem 6? The proof of the following result does not apply if some voters
are already committed to sides of the partition—it is assuming (and truly using the fact) that
we have full control of where all voters go. But in the online setting, the current voter u can
be a voter who does not come first and so some voters may already be assigned to sides of the
partition. And why do we get P for constructive but not destructive? The effect the following
proof uses is specific to the constructive case.)

Theorem 7 For each election system E with a polynomial-time winner problem, E -CCPV,
when restricted to one candidate, is in P.

Proof For the one candidate to win, she certainly must win the runoff, in which all voters
vote. Also, if she does win when all voters vote, then she can easily be made to survive
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the first round, using the partition structure (V,∅). It follows from these two observations
that constructive (non-online) control by partition of voters is possible if and only if the one
candidate wins in the election with voter list V . ��

5 Online control for plurality

We have seen in the previous section that online control can be very hard, namely PSPACE-
complete, even for voting systems whose winners can be determined in polynomial time. In
this section, we study online control for plurality voting.

In this very simple yet popular voting system, every voter gives one point to her most
preferred candidate, and all candidates with the most points win. For plurality it is known
that non-online control by adding and by deleting voters can be done in polynomial time,
both in the constructive and in the destructive cases. For the constructive cases, this is true
because the two relevant unique-winner-model results of [5], as noted in [17], also hold
in the nonunique-winner model. For the destructive cases, we have checked and here state
as true that those unique-winner-model results of [23] are easily seen to also hold in the
nonunique-winner model.

We now show that the corresponding types of online control are also easy.

Theorem 8 The problems online-plurality-CCDV, online-plurality-CCAV, online-
plurality-DCDV, and online-plurality-DCAV are in P.

Proof Let us first address the case of online-plurality-CCDV. We now present the
polynomial-time algorithm for this case.

The input to the algorithm will be (C, u, V, σ, d), a given basic OVCS, augmented by
the additional information of online control by deleting voters: a deletion upper bound k, for
each voter v before u a flag saying if v was deleted and the vote cast by v (if not deleted),
where at most k voters can be marked as deleted, and a vote to cast for u (if u is not to be
deleted).

If d is the chair’s bottom choice in σ , we are done, since the input then is trivially in
online-plurality-CCDV (unless it is syntactically illegal); this is so since d being the chair’s
bottom choice in σ means that any nonempty winner set is acceptable, but in plurality the
winner set is indeed nonempty.

If exactly k voters have been marked as already deleted, we can do no more deletions, so
u and all later voters go in, and we assume (as this is the most challenging case) that all later
voters vote for one particular candidate in Λd = {c ∈ C

∣
∣ c <σ d} that among the candidates

in Λd has the most first place votes after u is put in, and so we can easily answer the online
control question.

If fewer than k voters have been selected already for deletion, then delete u if and only
if u’s top choice is a highest scoring (with respect to the voters before u) candidate in
{c ∈ C

∣
∣ c <σ d}. Then assume that all later voters vote for one particular candidate in

Λd = {c ∈ C
∣
∣ c <σ d} that among the candidates in Λd has the most first place votes after

u is put in. And assume we delete as many of those as the deletion amount left (after u)
allows. It is easy to see whether this results in “d or better” being a winner (in which case
our algorithm answers “yes”) or not (in which case our algorithm answers “no”).

This concludes our clearly polynomial-time algorithm for online-plurality-CCDV. (One
might comment that it would suffice, especially to just handle the decision version, to follow
the very simple “operational” approach mentioned on page 5 of Sect. 2. However, we have
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given a more dynamic description of the process both as we want to make clear how the
chair can decide what action to take at each point and as the description above is also helping
establish the correctness of the actions taken.)

For online-plurality-CCAV, let (C, u, V, σ, d) be a given basic OVCS, augmented by the
additional information of online control by adding voters: an addition upper bound k, for
each voter the information of whether she is registered or not, and for each unregistered voter
before u the information of whether she has been added or not, the vote of each registered or
added voter before u, and u’s potential vote. Again, the question is trivial if d is the chair’s
bottom choice in σ . Otherwise, we can see what u’s vote is and if k has yet been reached. If k
has not been reached yet, we add u if and only if u’s top choice belongs to {c ∈ C

∣
∣ c ≥σ d}.8

And in the worst case all future voters vote for the same member of {c ∈ C
∣
∣ c <σ d}, which

will be one that after u votes has the most first-place votes among those.
The two destructive cases can be handled analogously. The main differences are, in both

cases, that the question now is trivial to decide if d is the chair’s top choice inσ ; in the deleting-
voters case, that u is to be deleted (provided the deletion limit k has not been reached yet) if
and only if u’s top choice is a highest scoring (with respect to the voters before u) candidate
in {c ∈ C

∣
∣c ≤σ d}; and in the adding-voters case, that u is to be added (provided the addition

limit k has not been reached yet) if and only if u’s top choice belongs to {c ∈ C
∣
∣ c >σ d}.

And, in both cases, we again assume that all future votes will belong to some particular
member of {c ∈ C

∣
∣ c ≤σ d} that after u votes has the most first-place votes among those

candidates. ��
Non-online control by partition of voters, in the model we feel is most natural and have

adopted in this paper (called “ties promote”), is NP-complete in both the constructive and
destructive cases ([23] showed this in the unique-winner model, and we have checked and
here state that NP-completeness also holds for the nonunique-winner model analogues). In
contrast, the corresponding types of online control are both coNP-hard. This implies that these
problems cannot be in NP, unless NP = coNP, which is considered to be highly unlikely.
It remains open whether or not they are in coNP; we conjecture that they are not, although
admittedly that conjecture is driven by our inability so far to find any way of capturing this
problem with a single universal quantification.

Theorem 9 online-plurality-CCPV and online-plurality-DCPV are coNP-hard.

Proof Weprove this by a reduction from the complement of the followingNP-complete prob-
lem, Hitting Set: Given a set B = {b1, . . . , bm}, a nonempty collectionS = {S1, . . . , Sn} of
subsets of B, and a positive integer k ≤ m, does S have a hitting set of size at most k, i.e.,
does there exist a set B ′ ⊆ B such that ‖B ′‖ ≤ k and for all Si ∈ S , Si ∩ B ′ �= ∅.

We turn an instance (B,S , k) of Hitting Set into the following instance of online partition
of voters. The set of candidates is {c, w, b1, . . . , bm}∪A, where A = {ai | 1 ≤ i ≤ 4mnk+1}.
The current voter is u. The votes before u that are on the left side of the partition are exactly
the same as the votes before u that are on the right side of the partition. Both sides of the
partition consists of the following votes.

– 4nk votes c > w > · · · , where · · · denotes that the remaining candidates follow in some
arbitrary order.

8 Sure enough, u’s top choice could be one of those candidates that end up having only few votes, so adding
u could be a wasted addition that will block some future good addition in some vote sequences, but in the
worst case all future voters put first a candidate disliked by the chair; so our action is fine within the quantifier
structure of the problem.
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– 4nk votes w > c > · · · .
– For every i , 1 ≤ i ≤ n, 2k votes Si > c > · · · , where Si denotes the candidates in Si in

some arbitrary order.
– For every j , 1 ≤ j ≤ m, as many votes b j > B − {b j } > c > w > · · · as needed to

make the score of b j equal to 4nk − 1 in this subelection.
– For every i , 1 ≤ i ≤ 4mnk, one vote ai > c > · · · and one vote ai > w > · · · .

Voter u votes a4mnk+1 > w > · · · . And there are k voters after u. The chair’s top
choice is c and the chair’s bottom choice is w, and the distinguished candidate is c in the
constructive case (i.e., for online-plurality-CCPV) and w in the destructive case (i.e., for
online-plurality-DCPV).
A simple but crucial observation is that no candidate a ∈ A will ever make it to the final

round, since her score in the first round in either subelection will be at most 2 + k, which is
less than c’s score in that subelection. (Let us explain where that 2 + k bound comes from.
Each a ∈ A − {a4mnk+1} gets 2 points from the fifth bullet item above, and gets at most k
points from the voters after u, and—keeping in mind that the Si are subsets of Bi and so do
not involve a—gets no other points; so such an a will have a first-round score of at most
2 + k. a4mnk+1 is slightly different; it will not gain the two points from the fifth bullet point
as it is excluded from that, but will get one point from voter u, and so its first-round score
is at most 1 + k, which of course is less than 2 + k.) If both c and w participate in the final
round, c gains 8mnk points, w gains 8mnk + 1 points, and no other candidate gains points
from the voters specified above whose top choice was in A.

We will show that S does not have a hitting set of size at most k if and only if c can
always be made a winner in the constructed election, and we will show thatS does not have
a hitting set of size k if and only ifw can always be made to not be a winner in the constructed
election. This proves the theorem.

First suppose that S has a hitting set of size at most k. Let B ′ be a hitting set of size k.
B ′ exists, since k ≤ m. Let the k voters after u vote such that the top choice of the i th voter
is the i th candidate in B ′. Then, no matter how we partition the voters, the set of candidates
that participate in the final round is {c, w} ∪ B ′. The scores in the final round are as follows:
(a) score(c) = 8nk + 8mnk, (b) score(w) = 8nk + 8mnk + 1, and (c)

∑

b∈B′ score(b) =
8mnk − 2m + k. It follows that c is not a winner and that w is a winner.

For the converse, suppose that S does not have a hitting set of size at most k. Partition
by putting u and all voters after u in the same first-round election. Then the set of candidates
in the final round is {c, w} ∪ B ′, where B ′ ⊆ B and ‖B ′‖ ≤ k. Since B ′ is not a hitting
set, in the final round c gains at least 4k points from voters voting Si > c > · · · such that
Si ∩ B ′ = ∅. Thus in the final election the following hold: (a) score(c) ≥ 8nk + 8mnk + 4k,
(b) score(w) ≤ 8nk + 8mnk + 1+ k, and (c)

∑

b∈B′ score(b) ≤ 8mnk − 2m + k. It follows
that c is the unique winner of this election. ��

6 Conclusions and open questions

Inspired by the maxi-min approach of online algorithms, we studied online voter control in
sequential voting.We showed that for suitably constructed election systemswith polynomial-
time winner problems, the resulting voter-control problems can be extremely hard, namely
PSPACE-complete, even for just two candidates. We additionally obtain coNP-completeness
for the deleting/adding-voter cases, even for just two candidates, when there is a bounded
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deletion/addition limit. For plurality, things are easier still: Online control by deleting or
adding voters is in polynomial time for plurality, just as in the non-online case.

Attractive future directions include the study of natural election systems in addition to
plurality, or even the study of whole classes of natural election systems. Can one obtain
PSPACE-completeness results for existing systems, for example? Another interesting direc-
tion would be to investigate online control through a typical-case analysis of heuristic
approaches (such as, for example, [22,34] do rigorously in a winner-problem setting, see
also [38]).
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