
1 23

Autonomous Agents and Multi-Agent
Systems

ISSN 1387-2532
Volume 29
Number 6

Auton Agent Multi-Agent Syst (2015)
29:1091-1124
DOI 10.1007/s10458-014-9277-x

Complexity of manipulation, bribery, and
campaign management in Bucklin and
fallback voting

Piotr Faliszewski, Yannick Reisch, Jörg
Rothe & Lena Schend

1 23

Your article is protected by copyright and all

rights are held exclusively by The Author(s).

This e-offprint is for personal use only

and shall not be self-archived in electronic

repositories. If you wish to self-archive your

article, please use the accepted manuscript

version for posting on your own website. You

may further deposit the accepted manuscript

version in any repository, provided it is only

made publicly available 12 months after

official publication or later and provided

acknowledgement is given to the original

source of publication and a link is inserted

to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.

Auton Agent Multi-Agent Syst (2015) 29:1091–1124
DOI 10.1007/s10458-014-9277-x

Complexity of manipulation, bribery, and campaign
management in Bucklin and fallback voting

Piotr Faliszewski · Yannick Reisch ·
Jörg Rothe · Lena Schend

Published online: 2 October 2014
© The Author(s) 2014

Abstract A central theme in computational social choice is to study the extent to which
voting systems computationally resist manipulative attacks seeking to influence the outcome
of elections, such as manipulation (i.e., strategic voting), control, and bribery. Bucklin and
fallback voting are among the voting systems with the broadest resistance (i.e., NP-hardness)
to control attacks. However, only little is known about their behavior regarding manipulation
and bribery attacks. We comprehensively investigate the computational resistance of Bucklin
and fallback voting for many of the common manipulation and bribery scenarios; we also
complement our discussion by considering several campaign-management problems for these
two voting rules.

Keywords Computational social choice · Complexity theory · Voting theory ·
Manipulation · Bribery · Campaign management · Bucklin voting · Fallback voting

1 Introduction

A central theme in computational social choice (see, e.g., the bookchapter by Brandt et
al. [11]) is to study manipulative attacks that seek to influence the outcome of elections, such

A preliminary version of this paper appeared as an extended abstract in the proceedings of the 13th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS-2014).

P. Faliszewski
AGH University, Krakow, Poland
e-mail: faliszew@agh.edu.pl

Y. Reisch · J. Rothe · L. Schend (B)
Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
e-mail: schend@cs.uni-duesseldorf.de

Y. Reisch
e-mail: yannick.reisch@uni-duesseldorf.de

J. Rothe
e-mail: rothe@cs.uni-duesseldorf.de

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-014-9277-x&domain=pdf

1092 Auton Agent Multi-Agent Syst (2015) 29:1091–1124

as manipulation (i.e., strategic voting), control, and bribery. In manipulation (introduced by
Bartholdi et al. [1,2] and,more generally, byConitzer et al. [14]), voters try to do so by casting
insincere votes. In control (introduced by Bartholdi et al. [3] and extended by Hemaspaandra
et al. [36] to capture further control actions), an election chair tries to influence the election
outcome by changing the structure of the election via adding/deleting/partitioning either
candidates or voters. In bribery (introduced by Faliszewski et al. [27]), an external agent
tries to influence the election outcome by bribing certain voters without exceeding some
given budget. Some types of bribery-like actions have been studied under the term campaign
management (see the work of Elkind et al. [20,21]), paying tribute to the fact that certain
bribery scenarios have a more positive touch when looking at them through the lenses of a
political campaign manager (in fact, every form of bribery can be seen through these lenses,
but some are particularly well-suited for this interpretation).

Since the various types of manipulation, control, and bribery attacks are possible in prin-
ciple for many (or even for all reasonable) voting systems,1 it has been studied to what extent
computational hardness can provide some kind of protection for specific voting systems.
These lines of research have been surveyed by Faliszewski et al. [28], Faliszewski and Pro-
caccia [32], and Rothe and Schend [45], as well as in the bookchapters by Conitzer and
Walsh [15], Faliszewski and Rothe [33], Faliszewski et al. [30], and Baumeister et al. [4]. In
particular, it is known from the work of Erdélyi et al. [22,23,25,26] that Bucklin and fallback
voting are among the voting systems with the broadest resistance (in terms of NP-hardness2)
to control attacks.3 However, only little is known about the behavior of these two voting
systems regarding manipulation and bribery attacks. The only related results we are aware
of are due to Schlotter et al. [47] who have studied Bucklin and fallback voting with respect
to campaign management, focusing on so-called shift bribery and support bribery.

Closing this wide gap, we comprehensively investigate the computational resistance of
Bucklin and fallback voting to many of the common manipulation and bribery scenarios,
and we also complement the results of Schlotter et al. [47] by studying two other campaign-
management problems, namely swapbribery and extensionbribery (to be defined inSect. 5.1).
In each such scenario, we will handle

(a) both the weighted and the unweighted case (where the voters in a weighted election may
be of varying importance, whereas the voters in an unweighted election have unit weight
each—“one person, one vote”),

(b) both the constructive case (aiming to make a given candidate win) and the destructive
case (aiming to prevent a given candidate’s victory),

(c) both the nonunique-winner and the unique-winner model (where the former means that
it is enough to be one among possibly several winners, whereas the latter requires a
candidate to be the one and only winner), and

1 Recall, for example, the celebrated Gibbard–Satterthwaite theorem [35,46] that, essentially, says that only
dictatorial voting rules are strategy-proof; see also its extension to irresolute voting rules that is due to Duggan
and Schwartz [18]. The notion of strategic candidacy, studied by Dutta et al. [19], has a similar flavor from the
point of view of candidate control. From the point of view of voter control, it is absolutely natural to expect that
if we add sufficiently many votes supporting a given candidate, this candidate should win. The same applies
to bribery: If we can bribe everyone, we should be able to ensure any candidate’s victory.
2 Resistance to manipulative actions is most often meant to be NP-hardness in the literature. Being a worst-
case measure only, NP-hardness does have its limitations. There are also a number of other approaches that
challenge such NP-hardness results, surveyed in [45]; for example, there are some experimental results on the
control complexity of Bucklin and fallback voting [44].
3 Other voting systems whose control complexity has been thoroughly studied include plurality, Condorcet,
and approval voting [3,36], Llull and Copeland voting [29], a variant of approval voting known as SP-AV [24],
range voting and normalized range voting [39], and Schulze voting [40,42] (see [33] for an overview).

123

Author's personal copy

Auton Agent Multi-Agent Syst (2015) 29:1091–1124 1093

(d) in the case of standard bribery problems, we will consider both the case where voters
may have varying prices to be bribed and the case where they are bribable at unit price
only.

This paper is organized as follows. In Sect. 2, we define the voting systems Bucklin and
fallback and provide the needed background on complexity theory. We then present our
results on manipulation in Sect. 3, on bribery in Sect. 4, and on campaign management (i.e.,
on swap bribery and extension bribery) in Sect. 5. Finally, Sects. 6 and 7 will give some
discussion and our conclusions.

2 Preliminaries

2.1 Bucklin and fallback elections

An election is a pair (C, V), where C = {c1, . . . , cm} is a set of m candidates and
V = (v1, . . . , vn) is a list of votes (or ballots) specifying the n voters’ preferences over
the candidates in C . How these preferences are represented depends on the voting system
used. We allow voters to be weighted, i.e., a nonnegative integer weightwi is associated with
each vote vi . For example, a vote vi of a voter with weightwi = 3 is counted as if three voters
with unit weight would have cast the same ballot. An unweighted election is the special case
of a weighted election where each voter has unit weight.

A voting system is a rule for how to determine the winner(s) of a given election. Here
we focus on Bucklin and fallback voting only. Both systems use the notion of (weighted)
majority threshold in V , which is defined by maj(V) = �W/2� + 1, where W = ∑n

i=1 wi

is the total weight of the votes in V . In Bucklin voting (BV), votes are linear rankings of all
candidates, denoted by, e.g., c2 > c3 > c1, which means that this voter (strictly) prefers c2
to c3 and c3 to c1. We call the top position in a vote level 1, the next position level 2, and so
on. Starting with the top position and proceeding level by level through the votes in V , we
determine the smallest level � such that some candidate(s) occur(s) in at least maj(V) votes
up to this level.4 A bit more formally, for each candidate c ∈ C , let scorei(C,V)(c) denote the
number of occurrences of c among the top i levels of the votes in V . The Bucklin score of c
in (C, V) is the smallest level k such that scorek(C,V)(c) ≥ maj(V). Among the candidates
from C with smallest Bucklin score, say �, those occurring most often up to level � are the
Bucklin winners (sometimes specifically called the level � Bucklin winners).

Fallback voting is a hybrid voting system designed by Brams and Sanver [10] to combine
Bucklin with approval voting. Let us first define approval voting, which was proposed by
Brams and Fishburn [7] (see also, e.g., [4,8] for more background). In approval voting, votes
in an election (C, V) are approval vectors from {0, 1}‖C‖ indicating for each candidate c ∈ C
whether c is approved (“1”) by this voter or not (“0”). Every candidate with the highest
approval score is an approval winner. For each vote v ∈ V , let Sv denote the approval
strategy of v, i.e., Sv ⊆ C contains the candidates approved by v. In fallback voting (FV),
each voter first partitions the set of candidates into the approved ones and the disapproved
ones and then provides a linear ranking of the approved candidates. For example, some voter
might disapprove of c1 and c4, but approve of c2 and c3, preferring c2 to c3; this vote is
denoted by c2 > c3 | {c1, c4}. To determine the winners in fallback voting, we first try to

4 In simplified Bucklin voting, all these candidates win. However, we consider Bucklin voting in the unsim-
plified version where winners are determined by a slightly more involved procedure. Note that every Bucklin
winner, as defined in the main text, also wins in simplified Bucklin voting, but not necessarily the other way
round.

123

Author's personal copy

1094 Auton Agent Multi-Agent Syst (2015) 29:1091–1124

find the Bucklin winners when they exist. If so, all Bucklin winners are fallback winners.
However, due to disapprovals it might happen that there is no Bucklin winner, and in that
case all approval winners are fallback winners. A bit more formally, given a fallback election
(C, V), let A(c) = {v ∈ V | c ∈ Sv} denote the set of voters that approve of candidate c ∈ C ,
let A j (c) denote the set of voters that approve of candidate c up to the j th level, and define

score(C,V)(c) =
∑

vi∈A(c)

wi and score j(C,V)(c) =
∑

vi∈A j (c)

wi .

The fallback score of c in (C, V) is the smallest level k such that scorek(C,V)(c) ≥ maj(V) (or
∞ if the candidate is never approved by a majority of voters). Among the candidates from C
with smallest fallback score, say �, those occurring most often up to level � are the (level �)
fallback winners. Otherwise (i.e., if no candidate in C satisfies scorek(C,V)(c) ≥ maj(V) for
any k ≤ m), all candidates c with maximum score(C,V)(c) are the fallback winners.

Bucklin elections are special fallback elections where all voters approve of all candidates.
This means that NP-hardness results for control problems in Bucklin elections directly trans-
fer to the same control problems in the more general fallback elections. However, this is not
the case for manipulation and bribery because in these problems some votes may change and
the two systems offer different ways of changing the votes. In those campaign-management
scenarios that we will study for both systems, though, NP-hardness in fallback elections does
immediately follow from NP-hardness in Bucklin elections.

2.2 Basics from complexity theory

We assume the reader is familiar with the basic notions from complexity theory such as
the complexity classes P and NP, the polynomial-time many-one (≤p

m) and Turing (≤p
T)

reducibility, and with hardness and completeness with respect to ≤p
m . For more background

on complexity theory, see, e.g., the textbooks [41,43]. In our proofs of NP-hardness, we
use Partition and Exact Cover by Three- Sets, two well-known NP-complete prob-
lems [34].

Partition

Given A set A = {1, . . . , k} and a list (a1, . . . , ak) of nonneg-
ative integers with

∑k
i=1 ai = 2K , where K is some

positive integer.
Question Is there a set A′ ⊆ A such that

∑
i∈A′ ai = ∑

i /∈A′ ai = K ?

Exact Cover by Three- Sets (X3C)

Given A set B = {b1, b2, . . . , b3m }, m ≥ 1, and a collection
S = {S1, S2, . . . , Sn} of subsets, where for each Si in
S we have that Si ⊆ B and ‖Si‖ = 3.

Question Is there a subcollectionS ′ ⊆ S such that each element
of B occurs in exactly one set in S ′?

When discussing the running times of our algorithms, we assume arithmetic operations
to have unit costs. This is to model the fact that even if the voters are weighted, it is hard to

123

Author's personal copy

Auton Agent Multi-Agent Syst (2015) 29:1091–1124 1095

imagine elections where the weights would be so large as to require arithmetic beyond what
current computers handle as unit operations. If one is uncomfortable with this approach, one
should multiply the running times of our algorithms for the weighted cases by the logarithm
of the sum of the weights of all the voters.

3 Manipulation in Bucklin and fallback voting

3.1 Definitions and overview of results

Conitzer et al. [14] introduced the following decision problem to model manipulation by a
coalition of weighted voters. For a given voting system E , define:

E -Constructive Coalitional Weighted Manipulation (E -CCWM)

Given A set C of candidates, a list V of nonmanipulative votes over C each having
a nonnegative integer weight, where WV is the list of these weights, a list
WS of the weights of k manipulators in S (whose votes over C are still
unspecified) with V ∩ S = ∅, and a designated candidate c ∈ C .

Question Can the votes in S be set such that c is an E winner of (C, V ∪ S)?

The unweighted case E -CCUM is the special case of E -CCWM where all voters and
manipulators have unit weight. By changing the question to “… such that c is not a winner
in (C, V ∪ S)?,” we obtain the destructive variants, E -DCWM and E -DCUM. Bartholdi
et al. [1,2] first studied these problems with only one manipulator, but here we focus on
manipulations exerted by coalitions of manipulators.

As we ask in the constructive problems E -CCUM and E -CCWM above whether the
designated candidate c can be made a winner (or, in the destructive cases, E -DCWM and
E -DCUM, whether c can be prevented from being a winner) of the resulting election, we
say that the problem is stated in the so-called nonunique-winner model (sometimes referred
to as the co-winner or simply the winner model). By asking whether the designated can-
didate can be made a unique winner (or, again in the destructive cases, can be prevented
from being a unique winner) of the resulting election, the so-called unique-winner model
is described. For the latter, we denote the corresponding decision problems by E -uCCWM,
E -uCCUM, E -uDCWM, and E -uDCUM.5 With that notation, the following proposition
follows immediately from the definitions.

Proposition 1 1. E -CCUM ≤p
m E -CCWM and E -uCCUM ≤p

m E -uCCWM.
2. E -DCUM ≤p

m E -DCWM and E -uDCUM ≤p
m E -uDCWM.

3. E -uDCUM ≤p
T E -CCUM.

4. E -uDCWM ≤p
T E -CCWM.

Table 1 gives an overview of our results for manipulation in Bucklin and fallback voting.
Note that all our results hold in both the unique-winner and the nonunique-winner model. In
the following sections, we will provide the detailed proofs for the nonunique-winner model
and will explicitly state how the proofs can be adapted to work in the unique-winner model.

5 We introduce this notation for Proposition 1 only; throughout the rest of the paper we will slightly abuse
notation by always using the abbreviations E -CCWM, E -CCUM, E -DCWM, and E -DCUM whenever the
winner model will be clear from the context.

123

Author's personal copy

1096 Auton Agent Multi-Agent Syst (2015) 29:1091–1124

Table 1 Overview of results for
manipulation in Bucklin and
fallback voting

Problem Bucklin voting Fallback voting

Complexity Reference Complexity Reference

E -CCUM P Corollary 1 P Proposition 3

E -DCUM P Corollary 1 P Proposition 3

E -CCWM NP-complete Theorem 1 P Proposition 2

E -DCWM P Theorem 2 P Proposition 2

3.2 Results for weighted manipulation

In this section we analyze the complexity of weighted manipulation in Bucklin and fallback
voting.

In fallback elections, manipulators that try to make a certain candidate a winner by chang-
ing their votes can follow a simple strategy: They can limit their approval strategy to only this
candidate and thus preclude all other candidates from gaining points from their votes. It is
easy to see that if this attempt is not successful, no otherway of constructing themanipulators’
votes can make their designated candidate win (in both winner models). Since the best strat-
egy for the manipulators is to cast identical votes, we immediately have that fallback-CCWM

is in P for both winner models, which with Proposition 1 implies that the destructive variant
in the unique-winner model is in P, as well. For the destructive case in the nonunique-winner
model, a likewise simple strategy can be followed: The manipulators determine a candidate
that is closest to the designated one (that is, they find a candidate who gets most points until
the designated candidate’s winning level) and approve of this candidate only. We state this
observation in the following proposition.

Proposition 2 Fallback-CCWM and fallback-DCWM are in P, each in both winner models.

In weighted Bucklin elections, on the other hand, a coalition of manipulators trying to
make a certain candidate win is faced with a harder challenge, as the following result shows.

Theorem 1 For elections with at least three candidates, Bucklin-CCWM is NP-complete in
both winner models.

Proof It is easy to see that Bucklin-CCWM is in NP in both winner models and for all
numbers of candidates.

We show NP-hardness of this problem by a reduction from Partition. Let an instance
of Partition be given by A = {1, . . . , k} and (a1, . . . , ak) with

∑k
i=1 ai = 2K . We will

separate the proof into the case of an odd number of candidates, m ≥ 3, and an even number
of candidates, m ≥ 4, and we will start with the former:

In our reduction, wewill use the candidate setC = {c1, c2, . . . , cm−1}∪{p}, wherem ≥ 3
is an odd number (the desired number of candidates in the constructed election). To simplify
the description of the votes, we will use the following interval-like notation:

C[i, j] =
{
ci > ci+1 > · · · > c j if i < j,

ci > ci+1 > · · · > cm−1 > c1 > · · · > c j otherwise.

For example, by writing C[1, 4] > p > · · · we mean a preference order described by
c1 > c2 > c3 > c4 > p > · · · (i.e., we rank candidates c1, c2, c3, and c4 first, then p, and
then all the remaining candidates in some arbitrary-but-easy-to-compute order). Similarly,

123

Author's personal copy

Auton Agent Multi-Agent Syst (2015) 29:1091–1124 1097

Table 2 Voter list V in the proof
of Theorem 1 for an odd number
m ≥ 3 of candidates

Preference Weight

C
[
1, m−1

2

]
> p > · · · m−1

2 K

C
[
m−1
2 + 1,m − 1

]
> p > · · · m−1

2 K

C[1,m − 1] > p K

C[2, 1] > p K

.

.

.
.
.
.

C[m − 1,m − 2] > p K

Table 3 Level-i scores,

i ∈
{
m−1
2 , m−1

2 + 1
}
, of the

candidates in C for odd m ≥ 3

c ∈ C − {p} p

(a) Original election (C, V)

score
m−1
2 (m − 1)K 0

score
m−1
2 +1 mK (m − 1)K

(b) Manipulated election (C, V ∪ S)

score
m−1
2 ≤ mK 2K

score
m−1
2 +1 mK + K mK + K

p > C[m − 2, 2] > · · · would mean a preference order of the form p > cm−2 > cm−1 >

c1 > c2 > · · · .
We construct a Bucklin election (C, V), where the candidate set C is as already specified,

and where the voter list is as given in Table 2. Note that the overall weight of the voters in V
is 2(m − 1)K .

Let there be k manipulators in S with weights a1, a2, . . . , ak .While in the original election
we have a majority threshold of (m − 1)K + 1 points, the majority threshold is reached with
mK + 1 points in the election with the manipulators.

Since p receives no points at all in (C, V) before level m−1
2 + 1 and has fewer points than

any other candidate on this level (see Table 3a), p is not a Bucklin winner of the original
election (C, V).

We claim that (A, (a1, a2, . . . , ak)) ∈ Partition if and only if p can be made a Bucklin
winner in (C, V ∪ S).

From left to right: Assume there is a subset A′ ⊆ A such that
∑

i∈A′ ai = K . We can set
the preferences of the manipulators as follows:

– p > C
[
1, m−1

2

]
> · · · for all manipulators with weight ai for i ∈ A′, and

– p > C
[m−1

2 + 1,m − 1
]

> · · · for the remaining manipulators.

Then we have the level i scores, i ∈ {m−1
2 , m−1

2 + 1
}
, that are shown in Table 3b for the

manipulated election (C, V ∪ S), and we see that p is a level m−1
2 + 1 Bucklin winner in

(C, V ∪ S).
From right to left: Assume that p can be made a Bucklin winner by setting the preferences

of the k manipulators in S accordingly, and that without loss of generality, the manipulators
each position p on top. Since the smallest level on which p receives any points from the

123

Author's personal copy

1098 Auton Agent Multi-Agent Syst (2015) 29:1091–1124

voters in V is m−1
2 + 1, p cannot win on any smaller level. Together with the fact that

score
m−1
2

(C,V∪S)(p) = 2K and score
m−1
2 +1

(C,V∪S)(p) = mK + K ,

p has to be a level m−1
2 + 1 Bucklin winner with the above score of mK + K .

Recalling Table 3a, we know that the other candidates, c ∈ C − {p}, have already mK
points up to level m−1

2 + 1, even without the points from the manipulators. Since we have
m−1 candidates that have to fill m−1

2 positions in themanipulators’ votes, namely positions 2
through m−1

2 + 1, the overall sum of the points that all candidates c ∈ C − {p} will gain up
to level m−1

2 + 1 from the manipulators will be (m − 1)K . Together with the restriction that
none of the candidates is allowed to gain more than K points on the levels 1 to m−1

2 + 1 to
ensure that p is still a Bucklin winner, we have that every candidate c ∈ C − {p} is allowed
to receive exactly K points from the manipulators. This implies that choosing any candidate
in C − {p}, say c1, and defining A′ ⊆ A by

A′ =
{

i

∣
∣
∣
∣ manipulator with weight ai has c1 in one of the positions 2 through

m − 1

2

}

,

it holds that
∑

i∈A′ ai = K .
Thus, (A, (a1, a2, . . . , ak)) ∈ Partition.
For solving the unique-winner case, simply add two voters that have the following pref-

erences and weights:

– C
[
1, m−1

2

]
> p > · · · with weight 1, and

– C
[m−1

2 + 1,m − 1
]

> p > · · · with weight 1.

The rest of the argument can be adapted in a straightforward manner.
For the case of an even number m ≥ 4 of candidates, construct the following Bucklin

election (C, V). The candidate set isC = {c1, c2, . . . , cm−1}∪{p}. For i, j ∈ {1, 2, . . . ,m−
1}, in addition to the notationC[i, j] introduced above, for i > j , we writeCp[i, j] to denote
the preference “ci > ci+1 > · · · > cm−1 > p > c1 > · · · > c j .” (That is, the meaning
of Cp[i, j] is the same as the meaning of C[i, j], except that we insert p after candidate
cm−1.) The voter list V , divided into three groups of voters, is defined by the preferences and
weights shown in Table 4. Unspecified positions (denoted by “. . .” in the preferences) can be
filled arbitrarily with the candidates not explicitly occurring in this preference. Furthermore,
we have k manipulators in S with weights a1, a2, . . . , ak .

Let us now analyze the voter list V . First, we note that there are m
2 weight-K voters

in Group 1, m
2 − 1 weight-K voters in Group 2, and three weight-K voters in Group 3.

Thus, the total weight of the voters (not counting the manipulators) is mK + 2K . If we
include the manipulators, the total weight goes up to mK + 4K . In effect, after including
the manipulators, the majority theshold is m

2 K + 2K + 1 (or m
2 K + K + 1 not counting the

manipulators).
Let us now compute the level-m2 scores of the candidates in election (C, V) (these scores

are also given in Table 5a; c1 is the unique level m
2 Bucklin winner in (C, V)). We will

consider particular groups of candidates:

– Candidate p:

(1) Each voter in Group 1 ranks some m
2 candidates from C − {p} first, so neither of the

voters in this groups contributes toward the score of p at level m
2 .

123

Author's personal copy

Auton Agent Multi-Agent Syst (2015) 29:1091–1124 1099

Table 4 Voter list V in the proof
of Theorem 1 for an even number
m ≥ 4 of candidates

Voter group Preference Weight

Group 1 C
[
1, m

2
]

> p > · · · K

C
[
2, m

2 + 1
]

> p > · · · K

C
[
3, m

2 + 2
]

> p > · · · K

.

.

.
.
.
.

C
[m
2 ,m − 1

]
> p > · · · K

Group 2 Cp[m2 + 1, 1] > · · · K

Cp[m2 + 2, 2] > · · · K

Cp[m2 + 3, 3] > · · · K

.

.

.
.
.
.

Cp
[
m − 1, m

2 − 1
]

> · · · K

Group 3 p > C
[
1, m

2
]

> · · · K

c1 > C
[
2, m

2
]

> p > · · · K

c1 > C
[m
2 + 1,m − 1

]
> p > · · · K

(2) Each voter in Group 2 ranks p among the top m
2 candidates, so p’s level-m2 score

from these voters is
(m
2 − 1

)
K . (3) Only the first voter in Group 3 ranks p among

the top m
2 positions, so p gets K level-m2 points from Group 3.

– Candidate c1:

(1) c1 gets K level-m2 points from the first voter in Group 1.
(2) c1 gets K level-m2 points from m

2 − 2 voters in Group 2 (all of them except for the
first one) for a total of

(m
2 − 2

)
K level-m2 points.

(3) c1 gets K level-m2 points from each of the voters in Group 3.

– Each candidate ci , for i ∈ {
2, . . . , m

2 − 1
}
:

(1) ci gets K level-m2 points from each of the first i voters in Group 1, for a total of i K
level-m2 points.

(2) ci gets K level-m2 points from all but the first i voters in Group 2, for a total of(m
2 − 1 − i

)
K level-m2 points.

(3) ci gets K level-m2 points from the first two voters in Group 3, for a total of 2K level-m2
points.

– Each candidate cm
2 +i , for i ∈ {

0, . . . , m
2 − 1

}
:

(1) cm
2 +i gets K level-m2 points from each but the first i voters in Group 1, for a total of

(m2 − i)K level-m2 points.
(2) cm

2 +i gets K level-m2 points from the first i voters in Group 2, for the total of i K
level-m2 points.

(3) cm
2 +i gets K level-m2 points from exactly one voter in Group 3 (for i = 0 these points

come from the second voter,6 and for the other values of i , these points come from
the third voter).

6 Note that the first voter in Group 3 ranks c m
2
on position m

2 + 1.

123

Author's personal copy

1100 Auton Agent Multi-Agent Syst (2015) 29:1091–1124

Table 5 Level-i scores,
i ∈ {m

2 , m
2 + 1

}
, of the

candidates in C for even m ≥ 4

c1 c ∈ C − {p, c1} p

(a) Original election (C, V)

score
m
2 m

2 K + 2K m
2 K + K m

2 K

(b) Manipulated election (C, V ∪ S)

score
m
2 m

2 K + 2K m
2 K + 2K m

2 K + 2K

score
m
2 +1

< mK + 4K < mK + 4K mK + 4K

We claim that (A, (a1, a2, . . . , ak)) ∈ Partition if and only if p can be made a Bucklin
winner in (C, V ∪ S).

From left to right: Assume there is a subset A′ ⊆ A such that
∑

i∈A′ ai = K . The
preferences of the manipulators can then be set in the following way:

– p > C
[
2, m

2

]
> · · · for all manipulators with weight ai for i ∈ A′, and

– p > C
[m
2 + 1,m − 1

]
> · · · for the remaining manipulators.

Then we have the level i scores, i ∈ {m
2 , m

2 + 1
}
, that are shown in Table 5b. Hence, p is

the unique winner (at level m
2 + 1) and, thus, a Bucklin winner in (C, V ∪ S).

From right to left: Assume that p can be made a Bucklin winner by setting the manipula-
tors’ votes accordingly. Without loss of generality, we assume that all manipulators position
p on top. So we have that candidate p can reach exactly

– m
2 K + 2K points on level m

2 and
– mK + 4K points on level m

2 + 1.

For p to be a Bucklin winner, she has to be a level m
2 + 1 Bucklin winner with maximum

score. Thus, for all candidates c ∈ C − {p}, it has to hold that

score
m
2
(C,V∪S)(c) ≤ m

2
K + 2K

to ensure that none of these candidates reaches a strict majority on a smaller level than p
does. This directly implies that c1 cannot be in the top m

2 positions of any manipulator. For
the remaining candidates c ∈ C − {c1, p}, it holds that

score
m
2
(C,V)(c) = m

2
K + K ,

so each of them is only allowed to gain at most K points on the first m
2 levels. But due to

the restriction of c1’s position, the 2nd through m
2 th positions in all manipulators’ votes have

to be filled with candidates from C − {c1, p}. It follows that the sum of their scores will

increase by (m − 2)K points, while score
m
2
(C,S)(c) ≤ K still has to hold. This is possible only

if score
m
2
(C,S)(c) = K for all c ∈ C − {c1, p}. Thus, choosing any candidate in C − {c1, p},

say c2, there has to be a set A′ ⊆ A with

A′ =
{
i

∣
∣
∣ manipulator with weight ai has c2 in one of the positions 2 through

m

2

}
,

such that
∑

i∈A′ ai = K . Thus, (A, (a1, a2, . . . , ak)) ∈ Partition.
Since p is the unique winner in the manipulated election in the proof “from left to right,”

and since the proof “from right to left” only involves arguments about the level onwhich other
candidates than p reach the majority threshold, this construction solves the unique-winner
case without further adaptions. ��

123

Author's personal copy

Auton Agent Multi-Agent Syst (2015) 29:1091–1124 1101

Algorithm 1: Algorithm for Bucklin-DCWM

input : C set of candidates
V list of voters
WV weights of the voters
WS weights of the manipulators
p designated candidate

output: “YES” if (C, V,WV ,WS , p) ∈ Bucklin-DCWM

“NO” if (C, V,WV ,WS , p) /∈ Bucklin-DCWM

1 if
∑

w∈WS
w >

∑
w∈WV

w then
2 return “YES”;
3 foreach c ∈ C − {p} do
4 put p in the last position in the manipulators’ votes;
5 put c in the first position in the manipulators’ votes;
6 fill the remaining positions in the manipulators’ votes arbitrarily;
7 let S be the list of the manipulators’ votes;
8 if (p is not a Bucklin winner of (C, V ∪ S) with weights WV ∪ WS) then
9 return “YES”;

10

11 return “NO”;

We now turn to the destructive variant of coalitional weighted manipulation and give a
deterministic polynomial-time algorithm for this problem in Bucklin voting (Algorithm 1).
Intuitively, Algorithm 1 proceeds as follows: It tries all the candidates c ∈ C − {p} and
for each of them checks if having each of the manipulators cast an identical vote of the
form c > · · · > p (where candidates in C − {p, c} are ranked arbitrarily) ensures that p
does not win. If it succeeds for even one c, it accepts. Otherwise, it rejects. (In other words,
the problem of destructive coalitional weighted manipulation under Bucklin disjunctively
truth-table reduces to testing if it is possible to choose the manipulators’ votes so that a given
candidate c obtains a better result in the election than p.) Before formally proving the runtime
and correctness of this algorithm, we state the following useful lemma, which is easily seen
to hold.

Lemma 1 Let (C, V) be a weighted Bucklin election with total weight W and let c, p ∈ C.
Then the following holds.

1. Assume that c is not a (unique) Bucklin winner in (C, V) and that the votes in V are
changed such that the position of c is made worse in some votes, all else being equal.7

Then c is still not a (unique) Bucklin winner.
2. Assume that c is a (unique) Bucklin winner of the election and that the votes in V are

changed such that the position of c is improved in some votes, all else being equal. Then
c remains a (unique) Bucklin winner.

3. Assume that c is a (unique) Bucklin winner of the election and that p is not a (unique)
Bucklinwinner. If in some votes the positions of candidates are swappedwithout changing
the positions of c and p, all else being equal, then p is still not a (unique) Bucklin winner.

We now analyze Algorithm 1 for Bucklin-DCWM.

7 By “all else being equal” we tacitly mean that all other candidates remain in the same position in each vote,
except those candidates that improve their position by one due to shifting c toward the bottom. An analogous
comment applies to the cases where c’s position is improved in the second statement of this lemma and where
other candidates are swapped in the third statement of this lemma.

123

Author's personal copy

1102 Auton Agent Multi-Agent Syst (2015) 29:1091–1124

Theorem 2 In both winner models, Bucklin-DCWM can be decided in time O(m2(n +
‖WS‖)), where WS is the list of the manipulators’ weights.

Proof We begin with analyzing the runtime of Algorithm 1. Obviously, the algorithm always
terminates and the input size is inO(m︸︷︷︸

‖C‖
+ nm︸︷︷︸

‖V ‖
+ n︸︷︷︸

‖WV ‖
+‖WS‖+ 1︸︷︷︸

‖{p}‖
) = O(nm+‖WS‖).

The most costly part of the algorithm is the for-loop. To construct the manipulators’
votes, O(‖WS‖m) steps are needed. The winner-determination procedure for Bucklin can be
implemented with a runtime of O(nm), so the if-statement in line 8 can be computed in time
O(m(n + ‖WS‖)). Thus, the whole for-loop runs in time O(m2(n + ‖WS‖)).

To prove the correctness of the algorithm, we show that it gives the output “YES” if and
only if (C, V,WV ,WS, p) ∈ Bucklin-DCWM. (Note that by changing the condition of the
if-statement in line 8 to “(p is not a unique Bucklin winner of (C, V ∪ S) with weights
WV ∪ WS),” the algorithm solves Bucklin-DCWM in the unique-winner model which can
be shown with an analogous argumentation as below.)

From left to right: If the algorithm outputs “YES” in line 2, then we have
∑

w∈WS
w >∑

w∈WV
w, i.e., the sum of the manipulators’ weights is greater than the sum of the weights

of the nonmanipulative voters. In this case, any of the candidates c �= p can be made a
unique level 1 Bucklin winner in (C, V ∪ S) by putting c in the first position of all the manip-
ulators’ votes and filling the remaining positions arbitrarily. Hence, (C, V,WV ,WS, p) ∈
Bucklin-DCWM. If the algorithm outputs “YES” in line 9, the manipulators’ votes have
been constructed such that p is not a Bucklin winner in (C, V ∪ S). Thus, we have that
(C, V,WV ,WS, p) is a yes-instance of Bucklin-DCWM.

From right to left: Assume that (C, V,WV ,WS, p) ∈ Bucklin-DCWM. If
∑

w∈WS
w >∑

w∈WV
w, then the algorithm correctly outputs “YES.” Otherwise, the following holds:

Since the given instance is a yes-instance of Bucklin-DCWM, the votes of the manipulators
in S can be set such that p is not a Bucklin winner of the election (C, V ∪ S). We know from
Lemma 1 that successively swapping p with her neighbor until p is in the last position in
all votes in S does not change the fact that p is not a Bucklin winner in (C, V ∪ S′) (where
S′ are the new manipulative votes with p in the last position). Assume that c ∈ C − {p}
is a Bucklin winner in (C, V ∪ S). Then swap her position successively with her neighbor
in the votes in S′ until c is in the first position of all manipulative votes. Let S′′ denote the
accordingly changed list of manipulative votes. Again, from Lemma 1 we know that c still
wins in (C, V ∪ S′′). Let S′′′ be the list of manipulative votes that the algorithm constructs.
We can transform S′′ into S′′′ by swapping the corresponding candidates c′, c′′ ∈ C − {c, p}
accordingly. Since the positions of c and p remain unchanged, we have with Lemma 1 that p
is still not a Bucklin winner in (C, V ∪ S′′′). Thus, the algorithm outputs “YES” in line 9.��
3.3 Results for unweighted manipulation

The unweighted manipulation cases in fallback elections can all be solved in deterministic
polynomial time. This follows, togetherwith Proposition 1, directly from the results presented
for the weighted cases in Propostition 2. We state this in the following proposition.

Proposition 3 Fallback-CCUM and fallback-DCUM are in P, each in both winner models.

In Bucklin elections, however, the argumentation is more involved, since the manipulators
do not have the possibility to preclude any candidate from gaining points from their votes.
So the manipulators’ votes have to be carefully constructed to ensure that no other candidate
than the designated candidate gains too many points on the relevant levels.

123

Author's personal copy

Auton Agent Multi-Agent Syst (2015) 29:1091–1124 1103

Nevertheless, we can show that Bucklin-CCUM is in P by adapting an algorithm for
simplified-Bucklin-CCUM (recall Footnote 4 for the definition of simplified Bucklin voting)
that is due to Xia et al. [51]. We will do so by giving a high-level description of the algorithm
and the relevant information for understanding the pseudocode shown in Algorithm 2. The
correctness of the algorithm and the run-time analysis will then be shown in the proof of
Lemma 2 and Theorem 3.

Algorithm 2: Algorithm for Bucklin-CCUM
input : C set of candidates

V list of voters
k number of manipulators
p designated candidate

output: “YES” if (C, V, k, p) ∈ Bucklin-CCUM
“NO” if (C, V, k, p) /∈ Bucklin-CCUM

1 if k > ‖V ‖ then
2 return “YES”;

3 let max_scr�min , max_scr�min−1, num�min , num�min−1 be arrays of length m;

4 maj = �‖V ‖+k
2 � + 1;

5 �min = min{i | scorei
(C,V)

(p) + k ≥ maj};
6 foreach c ∈ C − {p} do

7 if min{i | scorei
(C,V)

(c) ≥ maj} < �min OR score
�min
(C,V)

(c) > score
�min
(C,V)

(p) + k then
8 return “NO”;

9 max_scr�min [c] = score
�min
(C,V)

(p) + k − score
�min
(C,V)

(c);

10 max_scr�min−1[c] = maj − score
�min−1
(C,V)

(c) − 1;

11 num�min [c] = min{max_scr�min [c], k};
12 num�min−1[c] = min{max_scr�min−1[c],max_scr�min [c], k};
13 if

∑
c∈C−{p} min{max_scr�min−1[c],max_scr�min [c], k} < (�min − 2)k OR

∑
c∈C−{p} min{max_scr�min [c], k} < (�min − 1)k then

14 return “NO”;
15

16 return “YES”;

The given input consists of a Bucklin election (C, V) with the set of candidates C and
the list of voters V with specified preferences. Candidate p ∈ C is the candidate we want to
make a winner of the resulting election by determining the yet unspecified preferences of k
manipulators.

To decide whether the given election can be manipulated successfully, that is, whether p
can indeed be made a winner by setting the preferences of the k manipulators, the following
variables and arrays of length m will be introduced.

maj: Denotes the strict majority threshold in the final election counting both the
number of regular voters and the k manipulators.

�min: Denotes the smallest level onwhich candidate p reaches themajority thresh-
oldmaj in the manipulated election, assuming that all the manipulators posi-
tion p on top. This means that if p is to win, p has to win at level �min, having
score�min

(C,V)(p) + k points.

max_scr�min : This array indicates how many further points each candidate c can gain
without having strictly more points than p on level �min.

123

Author's personal copy

1104 Auton Agent Multi-Agent Syst (2015) 29:1091–1124

max_scr�min−1: This array indicates how many further points each candidate c may gain
without reaching or exceeding the majority threshold maj on one of the
levels 1 through �min − 1.

num�min−1: This array indicates the number ofmanipulators that may have candidate c in
the first �min−1 positions of their votes without preventing p fromwinning,
that is, num�min−1[c] = min{max_scr�min [c],max_scr�min−1[c], k}.

num�min : This array indicates the number of manipulators that can place c among their
top �min positions without preventing p from winning, that is, num�min [c] =
min{max_scr�min [c], k}.

We have that for all c ∈ C−{p},max_scr�min andmax_scr�min−1 contain positive numbers
and that num�min [c] ≥ num�min−1[c].

The algorithm proceeds as follows. In a first step (in line 1) it is tested whether there are
more manipulators than nonmanipulative voters which would lead to a trivial yes-instance.
If this test fails, the algorithm proceeds and tests whether the given instance is a trivial no-
instance in the sense that there is at least one other candidate that cannot be dethroned by
p with the given number k of manipulators (in line 7; we will go into further detail in the
proof of Lemma 2). If no such candidate is found, the algorithm computes the neccessary
arrays described above and proceeds to line 13. In this final step, assuming that p is in the
first position in every manipulator’s preference, the algorithm checks whether the remaining
positions in the preferences can be filled while still ensuring that no candidate c ∈ C − {p}
beats p.

The following lemma gives the detailed proof of correctness of Algorithm 2.

Lemma 2 Considering the notation C, V , k, p, max_scr�min , max_scr�min−1, num�min ,
num�min−1, �min, and maj as in Algorithm 2, it holds that:

1. If k > ‖V ‖ then (C, V, k, p) ∈ Bucklin-CCUM.
2. If there is a candidate c ∈ C − {p} with

(a) min{i | scorei(C,V)(c) ≥ maj} < �min or

(b) score�min
(C,V)(c) > score�min

(C,V)(p) + k, then (C, V, k, p) /∈ Bucklin-CCUM.

3. If neither of the above two conditions is met, then (C, V, k, p) /∈ Bucklin-CCUM if and
only if

(a)
∑

c∈C−{p} min{max_scr�min [c],max_scr�min−1[c], k} < (�min − 2)k or

(b)
∑

c∈C−{p} min{max_scr�min [c], k} < (�min − 1)k.

Proof 1. If the number of manipulators is greater than the number of nonmanipulative
voters, a successful manipulation is always possible. The manipulators simply position
p on top in their votes, so p reaches the majority threshold already on the first level.
Then, (C, V, k, p) ∈ Bucklin-CCUM trivially holds.

2. Let c ∈ C − {p} be an arbitrary candidate.

(a) It holds that min
{
i

∣
∣
∣ scorei(C,V)(c) ≥ maj

}
< �min: That means that we have a

candidate c that reaches maj votes on an earlier level than p, and c does so even
without the manipulators’ votes. Thus (C, V, k, p) /∈ Bucklin-CCUM.

(b) It holds that score�min
(C,V)(c) > score�min

(C,V)(p)+k: This means that, on exactly the level
where p would have to win the manipulated election, c gets at least one point more
from the nonmanipulative voters than p gains in the election where the manipulators’

123

Author's personal copy

Auton Agent Multi-Agent Syst (2015) 29:1091–1124 1105

votes have already been added. That means that p cannot be made a Bucklin winner
of the manipulated election and thus (C, V, k, p) /∈ Bucklin-CCUM.

3. We assume that neither of the above conditions holds.
From right to left:

(a) Suppose that
∑

c∈C−{p} min{max_scr�min [c],max_scr�min−1[c], k} < (�min − 2)k.
In this case, it is not possible to fill the remaining (�min − 2)k positions (positions 2
through �min−1) in the manipulators’ votes without having for at least one candidate
d ∈ C − {p} that

either max_scr�min−1[d] − score�min−1
(C,S) (d) < 0

or max_scr�min [d] − score�min
(C,S)(d) < 0

holds. That is equivalent to

either maj − score�min−1
(C,V) (d) − 1 − score�min−1

(C,S) (d) < 0

or score�min
(C,V)(p) + k − score�min

(C,V)(d) − score�min
(C,S)(d) < 0,

which in turn is equivalent to

either score�min−1
(C,V∪S)(d) = score�min−1

(C,V) (d) + score�min−1
(C,S) (d) > maj − 1

or score�min
(C,V∪S)(d) = score�min

(C,V)(d) + score�min
(C,S)(d) > score�min

(C,V)(p) + k.

So we have that either d is a Bucklin winner in the manipulated election on a smaller
level than �min, or it holds that on level �min candidate d has at least one point more
than p. Thus (C, V, k, p) /∈ Bucklin-CCUM.

(b) Suppose that
∑

c∈C−{p} min{max_scr�min [c], k} < (�min − 1)k. In this case, it is not
possible to fill the remaining (�min − 1)k positions (positions 2 through �min) in the
manipulators’ votes without having for at least one candidate d ∈ C − {p} that:

max_scr�min [d] − score�min
(C,S)(d) < 0

⇔ score�min
(C,V)(p) + k − score�min

(C,V)(d) − 1 − score�min
(C,S)(d) < 0

⇔ score�min
(C,V∪S)(d) = score�min

(C,V)(d) + score�min
(C,S)(d) > score�min

(C,V)(p) + k.

So we have that d has at least one point more than p on level �min. So (C, V, k, p) /∈
Bucklin-CCUM.

From left to right: We show the contrapositive. Assume that both

(a)
∑

c∈C−{p} min{max_scr�min [c],max_scr�min−1[c], k} ≥ (�min − 2)k and

(b)
∑

c∈C−{p} min{max_scr�min [c], k} ≥ (�min − 1)k

hold. Then we can fill positions 2 through �min of the manipulators’ votes such that for each
candidate e ∈ C − {p}, the following holds:

max_scr�min−1[e] − score�min−1
(C,S) (e) ≥ 0 and

max_scr�min [e] − score�min
(C,S)(e) ≥ 0,

which is equivalent to

score�min−1
(C,V∪S)(e) = score�min−1

(C,V) (e) + score�min−1
(C,S) (e) ≤ maj − 1 and

score�min
(C,V∪S)(e) = score�min

(C,V)(e) + score�min
(C,S)(e) ≤ score�min

(C,V)(p) + k.

123

Author's personal copy

1106 Auton Agent Multi-Agent Syst (2015) 29:1091–1124

So we have that (C, V, k, p) ∈ Bucklin-CCUM.
This completes the proof. ��
Now we are ready to show that Algorithm 2 runs in polynomial time and correctly solves

Bucklin-CCUM.

Theorem 3 In both winner models, Bucklin-CCUM can be decided in time O(m2 + nm).

Proof It follows immediately from Lemma 2 that Algorithm 2 is correct. It is also clear that
it always terminates. To compute the needed scores scorei(C,V)(c) for all candidates c and

every level i , O(m2 + nm) steps are needed. The for-loop in line 6 needs O(m) steps. So the
algorithm has a runtime of O(m2 + nm) in total.

Note that the algorithm can easily be adapted to solve Bucklin-CCUM also in the unique-
winner model. ��

The algorithm can easily be adapted to solve the unique-winner case by slightlymodifying
the definition of the array max_scr�min (subtracting 1) and allowing equality in the second
inequality in line 7. The argumentation for the runtime analysis and the correctness can then
be adapted straightforwardly.

With Theorem 3 and Proposition 1, we have the following corollary.

Corollary 1 Bucklin-CCUM and Bucklin-DCUM are in P, each in both winner models.

4 Bribery in Bucklin and fallback voting

4.1 Definitions and overview of results

We begin with defining the standard bribery scenarios proposed by Faliszewski et al. [27]
(see also [29]) that will be applied here to fallback and Bucklin elections. Let E be a given
election system.

E -Constructive Unweighted Bribery (E -CUB)

Given An E election (C, V), a designated candidate p, and a nonnegative integer k.

Question Is it possible to make p an E winner by changing the votes of at most k voters?

This basic bribery scenario can be extended by either considering voters with different
weights, or allowing that each voter has a different price for changing her vote, or both. These
three scenarios are formally defined by the following problems:

E -Constructive Weighted Bribery (E -CWB)

Given An E election (C, V) with each voter vi ∈ V having a nonnegative integer
weight wi , a designated candidate p, and a positive integer k.

Question Is it possible to make p an E winner by changing the votes of at most k voters?

123

Author's personal copy

Auton Agent Multi-Agent Syst (2015) 29:1091–1124 1107

E -Constructive Unweighted Priced Bribery (E -CUB-$)

Given An E election (C, V) with each voter vi ∈ V having a nonnegative integer
price πi , 1 ≤ i ≤ n, a designated candidate p, and a positive integer k.

Question Is there a set B ⊆ {1, . . . , n} such that ∑i∈B πi ≤ k and the voters vi with
i ∈ B can be bribed so that p is an E winner of the resulting election?

E -Constructive Weighted Priced Bribery (E -CWB-$)

Given An E election (C, V) with each voter vi ∈ V having nonnegative integer
weight wi and price πi , 1 ≤ i ≤ n, a designated candidate p, and a positive
integer k.

Question Is there a set B ⊆ {1, . . . , n} such that ∑i∈B πi ≤ k and the voters vi with
i ∈ B can be bribed so that p is an E winner of the resulting election?

Table 6 Overview of results for bribery in Bucklin and fallback voting

Problem Bucklin voting Fallback voting

Complexity Reference Complexity Reference

E -CUB NP-complete Theorem 4 NP-complete Theorem 5

E -DUB P Corollary 4 P Theorem 7

E -CUB-$ NP-complete Corollary 2 NP-complete Corollary 3

E -DUB-$ P Theorem 6 P Theorem 7

E -CWB NP-complete Corollary 2 NP-complete Corollary 3

E -DWB P Theorem 6 P Theorem 7

E -CWB-$ NP-complete Corollary 2 NP-complete Corollary 3

E -DWB-$ NP-complete Theorem 8 NP-complete Theorem 8

By changing the question in the above four problems to whether p can be prevented from
being awinner of the election by bribing some of the voters, we obtain the destructive variants
of these bribery scenarios, and we denote the corresponding problems by E -DUB, E -DWB,
E -DUB-$, and E -DWB-$.

As for the manipulation scenarios, we state the problem in the nonunique-winner model
but all our results shown in Table 6 hold in both models. The proofs in the following sections
will be presented in detail for the nonunique-winnermodelwhilewewill only briefly describe
the needed adaptions that have to be made for the argumentation to also apply to the unique-
winner model.

4.2 Results for bribery

We start with the constructive cases of the standard bribery scenarios.

Theorem 4 CUB is NP-complete for Bucklin voting in both winner models.

Proof The following proof applies to both winner models with exactly the same argumen-
tation, no adaptions are needed. Membership of Bucklin-CUB in NP is obvious. We show
NP-hardness by a reduction from X3C.

Let (B,S) be an instance of X3Cwith B = {b1, b2, . . . , b3m} andS = {S1, S2, . . . , Sn}.
Without loss of generality, we may assume that n ≥ 2m. We construct a Bucklin-CUB

123

Author's personal copy

1108 Auton Agent Multi-Agent Syst (2015) 29:1091–1124

Table 7 Construction of Bucklin election (C, V) in the proof of Theorem 4

Position 1 Position 2 Position 3 . . . Position 3m + 1 Position 3m + 2

Cand. # Cand. # Cand. . . . # Cand. # Cand.

m c n + 1 − �1 b1 n + 1 − �2 b2 . . . n + 1 − �3m b3m n − m + 1 p

m d �1 − 1 g ∈ G ′
2 �2 − 1 g ∈ G ′

3 . . . �3m − 1 g ∈ G ′
3m+1 m − 1 g ∈ G ′

3m+2

n − 2m g ∈ G ′
1 . . .

instance ((C, V), p, k), where (C, V) is a Bucklin election with the candidates C = B ∪
{c, d} ∪ G ∪ {p}, p is the designated candidate, and k = m.

The setG is a set of “padding candidates,” which are used to ensure that certain candidates
do not gain points up to a certain level. Padding candidates are positioned in the votes such
that, up to a certain level, they themselves do not gain enough points to be relevant for the
central argument of the proof. (Specifically, we will ensure that up to a given level, each
padding candidate gets at most one point.) Thus, their scores are not listed in the tables
giving the scores of the relevant candidates.

For every b j ∈ B, define � j to be the number of sets Si ∈ S candidate b j is contained
in. V consists of the following 2n voters (i.e., a strict majority is reached with n + 1 votes):

– The first voter group consists of n voters. For each i , 1 ≤ i ≤ n, we have one voter of
the form

c > d > Si > Gi > {C − ({c, d} ∪ Si ∪ Gi)},
where Gi ⊆ G is a set of 3m − 3 padding candidates. When a set X of candidates is
given in such a ranking, the order of the candidates from X can be fixed arbitrarily in this
ranking.

– The second voter group consists of n voters as well. We will present the preferences
level by level from the first to the (3m + 2)nd position in Table 7, indicating the number
(by #) of occurrences of each candidate in these positions. Thus, the first column can
be read as follows: m of the n voters position c on the first place, m of the n voters
have candidate d on the first position while the remaining n − 2m voters each position
a different candidate from G on their top position. The second column indicates that
n + 1 − �1 of the n voters position candidate b1 on the second place and the remaining
�1 −1 voters in this group each have a different candidate from G on the second position
in their ballot. The remaining columns can be read analogously. Note that the notation
for the padding candidates has been chosen to keep the table as readable as possible
while still emphasizing that each candidate from G is only positioned once within the
top 3m + 2 positions in this voter group and thus only gains at most 1 point up to level
3m+2. TheG ′

r -sets are disjoint subsets ofG each containing exactly as many candidates
as voters are denoted by # in the respective column.

Table 8a shows the scores of the relevant candidates in (C, V) (namely, c, d , p, and each
b j ∈ B) for the relevant levels (namely, 1, 2, 3m, 3m + 1, and 3m + 2). In particular, one
can see that c is the unique level 1 Bucklin winner in (C, V).

We claim that S has an exact cover S ′ for B if and only if p can be made a Bucklin
winner by changing at most m votes in V .

From left to right: Let S ′ be an exact cover for B and let I ⊆ {1, . . . , n} be the set of
indices of the m elements inS ′. To make p a Bucklin winner, we only have to change votes
in the first voter group: For each i ∈ I , change the corresponding vote

123

Author's personal copy

Auton Agent Multi-Agent Syst (2015) 29:1091–1124 1109

Table 8 Level-i scores for
i ∈ {1, 2, 3m, 3m + 1, 3m + 2}
and the candidates in C − G

b j ∈ B c d p

(a) Original election (C, V)

score1 0 n + m m 0

score2 ≤ n + 1 n + m m + n 0

score3m ≤ n + 1 n + m m + n 0

score3m+1 ≤ n + 1 n + m m + n 0

score3m+2 n + 1 n + m m + n n − m + 1

(b) Modified election (C, V ′)
score1 0 n m m

score2 ≤ n n n m

score3m ≤ n n n m

score3m+1 ≤ n n n m

score3m+2 ≤ n n n n + 1

c > d > Si > Gi > {C − ({c, d} ∪ Si ∪ Gi)}
to

p > Gi > g′
1 > g′

2 > g′
3 > g′

4 > {C − ({g′
1, g

′
2, g

′
3, g

′
4, p} ∪ Gi)},

where each g′
j , 1 ≤ j ≤ 4, is from G but not in Gi .

With these new votes, c and d both lose m points on the first two levels from the first
voter group and p gains m points on the first level. Every candidate b j ∈ B loses exactly
one point on one of the levels 3, 4, or 5. The scores in the resulting election (C, V ′) are
shown in Table 8b. As one can see, p is the first candidate to reach a strict majority of
n + 1 votes (namely, on level 3m + 2) and is a level 3m + 2 Bucklin winner in the new
election.

From right to left: Assume that p is a Bucklin winner of the election (C, V ′), where V ′
is the new voter list containing the m changed votes. Since only m votes can be changed
and p did not score any points prior to level 3m + 2 in the original election, p has to be a
level 3m + 2 Bucklin winner in (C, V ′). Candidates c and d originally reach the majority
threshold already on, respectively, the first and the second level, so all votes that can be
changed must place c and d on the first two positions. The only votes doing so are those in
the first voter group. Finally, to prevent the candidates in B from reaching a strict majority
on a level prior to level 3m + 2, each of the 3m candidates has to lose at least one point by
changing at most m votes. This, again, can only be done by changing votes from the first
voter group and, hence, there has to be an exact coverS ′ for B, corresponding to the voters
from the first voter group that have to be changed. ��

The next corollary follows immediately from Theorem 4.

Corollary 2 In Bucklin elections, CWB, CUB-$, and CWB-$ are NP-complete, each in
both winner models.

Based on the corresponding proof for approval voting that is due to Faliszewski et al. [27],
we can show NP-completeness for unweighted bribery in fallback elections as well.

123

Author's personal copy

1110 Auton Agent Multi-Agent Syst (2015) 29:1091–1124

Table 9 Construction of fallback
election (C, V) in the proof of
Theorem 5

For each . . . Number of votes Ranking of candidates

1 i ∈ {1, . . . , n} 1 Si | (B − Si) ∪ E ∪ {p}
2 i ∈ {1, . . . , n} 1 Bi | (B − Bi) ∪ E ∪ {p}
3 n − m − 1 p | B ∪ E

4 � ∈ {1, . . . , n + m} 1 e� | B ∪ (E − {e�} ∪ {p}

Theorem 5 CUB is NP-complete for fallback voting in both winner models.

Proof Fallback-CUB obviously is in NP. To show NP-hardness, we give a reduction
from X3C. Let (B,S) be an instance of X3C with B = {b1, b2, . . . , b3m} and S =
{S1, S2, . . . , Sn}. (We assume that n > m; otherwise, it would be immediate to check if
(B,S) is a yes-instance of X3C or not.) We define the fallback election (C, V) with the
candidate set C = B ∪ E ∪ {p}, where p is the designated candidate and E is a set of
n + m padding candidates. For every j ∈ {1, . . . , 3m}, we again define � j as the number of
subsets Si ∈ S candidate b j ∈ B is contained in. Using this notation, we define the subsets
Bi = {b j ∈ B | i ≤ n − � j } for i ∈ {1, . . . , n}. V consists of the 4n − 1 voters whose
preferences are given in Table 9.

In this election, we have that score(p) = n−m−1, score(b j) = n for all j ∈ {1, . . . , 3m},
and score(e�) = 1 for all e� ∈ E and � ∈ {1, . . . , n +m}. Since no candidate reaches a strict
majority (at least 2n points), all candidates b j ∈ B are fallback winners of this election.

We claim that S has an exact cover S ′ for B if and only if p can be made a fallback
winner by bribing at most m voters.

From left to right: Suppose that S has an exact cover S ′ for B. We change the votes
of those voters in the first voter group where Si ∈ S ′ from Si | (B − Si) ∪ E ∪ {p} to
p | B ∪ E . In the resulting election (C, V ′), only the scores of the candidates in B and the
score of p change: p gains m points, whereas each b j ∈ B loses exactly one point. Thus,
with an overall score of n − 1, candidate p wins the election together with the candidates in
B.

From right to left: Suppose that p can be made a fallback winner by changing at most m
votes in V . That means that p can gain at most m points, so the maximum overall score that
p can reach is n − 1. Since each b j ∈ B has an overall score of n, every candidate in B has
to lose at least one point by changing at most m votes (otherwise, there would be at least one
candidate in B who beats p). This is possible only if in m votes of the first voter group the
candidates in Si are removed from the approval strategy such that these m sets Si form an
exact cover for B.

For the unique-winner model, simply change the third voter group in V to contain n −m
voters. ��

This result immediately implies NP-hardness for the remaining constructive bribery sce-
narios in fallback elections as well.

Corollary 3 In fallback elections, CWB, CUB-$, and CWB-$ are NP-complete, each in
both winner models.

We now turn to the destructive cases. The following result is an adaption of a result due to
Xia [49] who showed that DUB is in P for simplified Bucklin voting (again, recall Footnote
4).

123

Author's personal copy

Auton Agent Multi-Agent Syst (2015) 29:1091–1124 1111

Theorem 6 In Bucklin elections, DWB and DUB-$ are in P, each in both winner models.

Proof Both problems, Bucklin-DWB and Bucklin-DUB-$, can be solved by deterministic
polynomial-time algorithms that use Algorithm 1, which was designed in Sect. 3 to solve
the destructive coalitional weighted manipulation problem for Bucklin elections, Bucklin-
DCWM. The main difference between a bribery and a manipulation instance is that in the
latter only the preferences of the manipulators have to be found, whereas in the former both
the votes that will be bribed and the new preferences for these voters have to be found. If
we have the set of votes we want to change, we can use the algorithm for the manipulation
problem to construct the preferences. Thus, for the runtime of the algorithm the determination
of these voter sets is crucial, and we show that in Bucklin elections the number of voter sets
whose modification might actually lead to a successful bribery is bounded by a polynomial
in both the number of voters and the number of candidates.

Consider Algorithm 3 and a given input (C, V,WV , p, k) to it. In particular, p is the
designated candidate that we want to prevent from winning and assume that we have a
yes-instance, i.e., our bribery action is successful. We denote by (C, V ′′) the election result-
ing from (C, V) where the k votes that can be changed have already been changed. Then
there is a candidate c ∈ C − {p} that reaches a strict majority on level i , and it holds that
scorei

(C,V ′′)(c) > scorei
(C,V ′′)(p), which means that p is not a Bucklin winner in (C, V ′′). To

achieve that, for each i < m, there are only five types of preferences that might have been
changed in V , and they can be grouped into the following subsets Ti, j ⊆ V , 1 ≤ j ≤ 5:

Ti,1: p is among the top i − 1 positions and c is among the top i positions (when changing:
p loses points, c does neither lose nor win points up to level i).

Ti,2: p is among the top i − 1 positions and c is not among the top i positions (when
changing: p loses points, c wins points up to level i).

Ti,3: p is on position i and c is among the top i − 1 positions (when changing: p loses
points, c does neither lose nor win points up to level i).

Ti,4: p is on position i and c is not among the top i − 1 positions (when changing: p loses
points, c wins points up to level i).

Ti,5: both p and c are not among the top i positions (when changing: p does neither lose
nor win points, c wins points up to level i).

For a sublist of voters V ′ ⊆ V , denote their total weight byW ′
V . Algorithm 3 for Bucklin-

DWB works as follows.
It is easy to see that Algorithm 3 runs in deterministic polynomial time: the two outer

for-loops iterate up to m times, whereas the inner loop tests up to k5 variations of the vector
(a1, a2, . . . , a5). Since k ≤ n, we have that the number of executions of Algorithm 1 is in
O(m2n5).

For the proof of correctness, we show that given a bribery instance (C, V,WV , k, p), the
output of Algorithm 3 is “YES” if and only if (C, V,WV , k, p) ∈ Bucklin-DWB.

From left to right: If the algorithm returns “YES” in line 10, then Algorithm 1 could find
a successful destructive manipulation regarding p for k manipulators with total weight WV ′ .
So p is not a Bucklin winner in the election (C, V ′′), where V ′′ is the list of voters with k
changed votes. That means that (C, V,WV , k, p) ∈ Bucklin-DWB.

From right to left: Assume that (C, V,WV , k, p) ∈ Bucklin-DWB. Thus, there exists a
set of k voters V ′ with total weight WV ′ such that changing these votes prevents p from
being a Bucklin winner in (C, V ′′), where V ′′ is the new voter list containing the k changed
votes. We want to show that such a V ′′ can always be transformed to the list of votes V ′
that is changed in Algorithm 3. From our assumptions it follows that we have a candidate

123

Author's personal copy

1112 Auton Agent Multi-Agent Syst (2015) 29:1091–1124

Algorithm 3: Algorithm for Bucklin-DWB

input : C set of candidates
V list of voters
WV list of weights of voters
k number of votes that may be changed
p designated candidate

output: “YES” if (C, V,WV , k, p) ∈ Bucklin-DWB

“NO” if (C, V,WV , k, p) /∈ Bucklin-DWB

1 let A = {(a1, a2, . . . , a5) | ai ∈ {0, 1, . . . , k}}, V ′ = ∅;
2 foreach c ∈ C − {p} do
3 foreach i < m do
4 foreach (a1, a2, . . . , a5) ∈ A do
5 if

∑5
�=1 a� ≤ k then

6 foreach j ∈ {1, 2, . . . , 5} do
7 add the a j heaviest votes in Ti, j to V ′;
8 run Algorithm 1 on input (C, V − V ′,WV−V ′ ,WV ′ , p);
9 if Bucklin-DCWM(C, V − V ′,WV−V ′ ,WV ′ , p)= “YES” then

10 return “YES”;
11

12

13 return “NO”;

c ∈ C − {p} and a level i < m such that c is a level i Bucklin winner that prevents p from
being a Bucklin winner (in other words, in every Bucklin election there is some winner, so if
p is not a winner then some other candidate c is).

Assume that there are voters in V ′′ whose preferences were not in one of the Ti, j before
the changes were made, i.e., votes were changed that not necessarily needed to be changed
to prevent p from being a Bucklin winner. Undo these changes and change the same number
of votes in the lists Ti, j that were not changed before. We then have that all changed votes
are in one of the Ti, j .

Since Bucklin is monotonic, we can always replace votes with higher weight by votes with
lower weight (in one Ti, j) without risking that p would win just because of this exchange.
Thus, we know that we can transform any given list of bribed votes to a list that the algorithm
would construct and this would still prevent p from winning. This implies that if there is a
list of k voters that can be successfully bribed to prevent p from being a Bucklin winner, the
algorithm will find it.

For the Bucklin-DUB-$ problem the same algorithm can be used. The only difference is
that all weights have to be set to one, the cheapest instead of the heaviest votes are added to
V ′ in line 7 (i.e., in line 7 we add the votes with the lowest price instead of the ones with
the greatest weight), and it has to be tested whether the sum of the prices of the chosen votes
does not exceed the budget.

For the unique-winner case, run the algorithm solving the unique-winner variant of
Bucklin-DCWM in line 8. ��

From Theorem 6 we have the following corollary.

Corollary 4 In Bucklin elections, DUB is in P in both winner models.

This algorithm can be easily adapted for fallback elections. Due to the fact that in fallback
elections the voters do not have to rank all candidates, it is possible that a candidate wins

123

Author's personal copy

Auton Agent Multi-Agent Syst (2015) 29:1091–1124 1113

only on level m. Thus, we can decide DWB for fallback elections as well by making the
following changes in Algorithm 3:

– Change “i < m” in line 3 to “i ≤ m,”
– use the fallback analogue of Algorithm 1 in line 8, and
– change “Bucklin-DCWM” in line 9 to “fallback-DCWM,”

Theorem 7 In fallback elections, DWB, DUB, and DUB-$ are in P, each in both winner
models.

It remains to show the complexity of the destructive variant of priced bribery in weighted
Bucklin and fallback elections.

Theorem 8 Both Bucklin-DWB-$ and fallback-DWB-$ are NP-complete, each in both win-
ner models.

Proof That Bucklin-DWB-$ and fallback-DWB-$ are in NP in both winner models is again
easy to see. We show NP-hardness by a reduction from Partition. (The same reduction
works for both problems.) Let (A, (a1, . . . , ak)) with A = {1, . . . , k} and ∑k

i=1 ai = 2K
be an instance of Partition. We construct the following Bucklin (fallback) election (C, V)

with C = {c, p} and k + 1 votes in V : For each i ∈ {1, . . . , k}, we have one voter vi with
weight wi = ai , price πi = ai , and preference p > c, and we have one voter vk+1 with
weightwk+1 = 1, price πk+1 = K +1, and preference c > p (for fallback, all voters approve
of both candidates).

The total weight of the voters in (C, V) is 2K + 1, so maj(V) = K + 1. Let K be the
budget that may not be exceeded and let p be the designated candidate. Obviously, p is the
unique level 1 Bucklin (fallback) winner in (C, V).

We claim that (A, (a1, . . . , ak)) ∈ Partition if and only if p can be prevented from being
a Bucklin (fallback) winner by changing votes in V without exceeding the budget K .

From left to right: Let (A, (a1, . . . , ak)) ∈ Partition with A′ ⊆ A such that
∑

i∈A′ ai =
K . Change the votes of those voters with weight wi = ai for i ∈ A′ from p > c to c > p.
With these changes we have that on the first level, p has K points and c has K + 1 points, so
c is the new level 1 Bucklin (fallback) winner and p has been prevented from winning.

From right to left: Assume that p is not a Bucklin (fallback) winner in the bribed election.
Since there are only two levels, c has to win on the first level to prevent p from winning.
Changing the vote of voter vk+1 would provide no gain (and would be too expensive), so only
the votes of v1, . . . , vk may be changed. For each of the voters, the price equals the weight,
so voters with a total weight of K can be changed. Candidate c has one point on the first level
in the original election, so it is only possible to make c a unique level 1 Bucklin winner by
fully exhausting the budget and changing the votes with a total weight of K from p > c to
c > p (or, for the case of fallback, to approve of c only, which gives the same effect). Thus,
there is a subset A′ ⊆ A such that

∑
i∈A′ ai = K , so (A, (a1, . . . , ak)) ∈ Partition.

For the unique-winner model, simply omit voter vk+1 in the voter list. ��

5 Campaign management

In the discussion so far, we have focused on bribery and manipulation as means of attacking
Bucklin and fallback elections. However, it is also quite natural to consider bribery scenarios
through the lenses of running a political campaign. After all, in a successful campaign,
the candidates spend their effort (measured in terms of time, in terms of financial cost of

123

Author's personal copy

1114 Auton Agent Multi-Agent Syst (2015) 29:1091–1124

organizing promotional activities, and even in terms of the difficulty of convincing particular
voters) to change the minds of the voters. Thus a campaign preceding an election can be seen
as spending some resources for voters’ support. Formally, this idea is very close to bribery
(indeed, this view of campaignmanagementwas first presented in a paperwhose focuswas on
a bribery problem [21]). In the next section we will describe the two campaign-management
problems that we focus on in this paper, in the following two we will provide our results,
and in the last one we will briefly discuss other campaign-management problems from the
literature.

5.1 Definitions and overview of results

We start by discussing one of the most general campaign-management problems, namely the
Swap Bribery problem introduced by Elkind et al. [21]. This problem models a situation
where a campaign manager, who is interested in the victory of a given candidate p, can orga-
nize meetings with specific voters (the unweighted variant of the problem) or with groups
of like-minded voters (the weighted variant) and convince them to change their preference
orders. However, the difficulty (or, as we will say from now on, the cost) of changing the
voters’ preference orders depends both on the voter and on the extent of the change (for
example, it might be expensive to swap a voter’s most preferred candidate with this voter’s
least preferred one, but it might be very cheap to swap the voter’s two least preferred can-
didates). Formally, Elkind et al. [21] define swap-bribery price functions that for each voter
and for each pair of candidates give the cost of swapping these two candidates in the voter’s
preference order (provided the candidates are adjacent in this order).

Definition 1 (Elkind et al. [21]) A swap-bribery price function for voter vi is a function
πi : C × C → N that specifies for each ordered pair (cr , cs) of candidates the price for
changing vi ’s preference order from · · · > cr > cs > · · · to · · · > cs > cr > · · · . Only
candidates that are adjacent in a vote can be swapped.

In the E -Constructive Swap Bribery problem, where E ∈ {BV,FV}, we ask if there
exists a sequence of swaps of adjacent candidates that lead to a given candidate being an
E winner (note that the swaps are performed in sequence; even if some candidates are not
adjacent at first, they may become adjacent in the course of performing the swaps and, then,
can be swapped themselves).

E -Constructive Unweighted Swap Bribery (E -CUSB)

Given An E election (C, V), where V = (v1, . . . , vn), a designated candidate
p, a list (π1, . . . , πn) of swap bribery price functions, and a nonnegative
integer k.

Question Can p be made an E winner of an election resulting from the input election
by conducting a sequence of swaps of adjacent candidates in the voters’
ballots such that the total cost of the swaps does not exceed the budget k?

We define the weighted variant of the problem, E -CWSB, in the standard way (as far as
we can tell, the weighted variant of the problem has not been studied before). However, it
will soon become clear why the weighted variant is not particularly interesting and so we
omit stating explicitly the easy modification of the definition. We also define the destructive
variants of the swap bribery problems (E -DUSB and E -DWSB) in the usual way, by changing
the question to ask whether p can be prevented from being an E winner.

123

Author's personal copy

Auton Agent Multi-Agent Syst (2015) 29:1091–1124 1115

Swap bribery is a very difficult problem—it is NP-complete for almost all natural voting
rules (and, in particular, in the next section we will see a very strong hardness result for the
Bucklin and fallback rules). However, in Sect. 5.4 we briefly mention its natural special case
which is in P for both Bucklin and fallback voting.

The definition of swap bribery is very natural for voting rules—such as Bucklin—where
each voter ranks all the candidates. However, we need to extend it for the case of fallback
voting where the ballots consist of the approved part (with the candidates being ranked)
and of the disapproved part (with the candidates not being ranked). In our approach, we
define swap bribery under fallback to allow the swaps within the approved parts of the votes
only. Naturally, one could also define costs for including given disapproved candidates in the
approved part and, indeed, Elkind et al. [21] did so for SP-AV (SP-AV is another variant of
the approval system).8 However, following Schlotter et al. [47] (and Baumeister et al. [5]),
we believe that it is more informative to study the complexity of modifying the rankings
within the approved parts and the complexity of modifying the sets of approved candidates
separately.

Specifcally, in addition to swap bribery, we consider Extension Bribery introduced
byBaumeister et al. [5]. The idea of extension bribery is to capture very noninvasive campaign
actions, where we try to convince some voters to include the designated candidate at the end
of the ranking of approved candidates.

Definition 2 (Baumeister et al. [5]) The extension bribery price function δi : N → N of a
voter vi defines the price for extending the approved part of vi ’s vote with a given number
of so-far-disapproved candidates (these new candidates are ranked below the previously-
approved candidates, but among themselves are ranked as the briber requests).

Extension Bribery is defined in the following way.

FV- Constructive Unweighted Extension Bribery (FV- CUEB)

Given A fallback election (C, V), where V = (v1, . . . , vn), a designated candidate
p, a list (δ1, . . . , δn) of extension bribery price functions, and a nonnegative
integer k.

Question Can p be made a fallback winner by extending the approved parts of the
voters’ ballots without exceeding the budget k?

Again, the weighted variant (FV- CWEB) is defined in the natural way and so are the
destructive variants (FV- DUEB and FV- DWEB).

Table 10 summarizes the results of this section. Note that all these results hold in both
winner models and that we give the detailed proofs for the nonunique-winner models only,
while briefly providing the needed changes for the adaption to the unique-winner model.
(The dashes “–” in Table 10 indicate that extension bribery is not applicable to voting rules
such as Bucklin where each voter ranks all the candidates.)

8 Like fallback voting, SP-AV is a hybrid variant of approval voting. It has been introduced by Brams and
Sanver [9] and slightly modified by Erdélyi et al. [24] to cope with certain control actions (see also the chapter
by Baumeister et al. [4] for a thorough discussion of this voting system).

123

Author's personal copy

1116 Auton Agent Multi-Agent Syst (2015) 29:1091–1124

Table 10 Overview of results for swap bribery and extension bribery in Bucklin and fallback voting

Problem Bucklin voting Fallback voting

Complexity Reference Complexity Reference

E -CUSB NP-complete Theorem 10 NP-complete Corollary 5

E -DUSB NP-complete Corollary 5 NP-complete Corollary 5

E -CWSB NP-complete Theorem 9 NP-complete Theorem 9

E -DWSB NP-complete Theorem 9 NP-complete Theorem 9

FV- CUEB – P Theorem 12

FV- DUEB – P Theorem 12

FV- CWEB – NP-complete Theorem 11

FV- DWEB – NP-complete Theorem 11

The dashes “–” indicate that extension bribery is not applicable to Bucklin voting

5.2 Results for swap bribery

We start by quickly observing that (constructive and destructive)weighted swap bribery

is NP-complete for both the Bucklin and fallback rules. Note that we will use BV as a
shorthand for Bucklin voting.

Theorem 9 BV- CWSB, BV- DWSB, FV- CWSB, and FV- DWSB are NP-complete, each
in both winner models, even for elections with only two candidates.

Proof The proof for Bucklin is a direct consequence of the fact that CWB-$ is NP-complete
for plurality, even for just two candidates [27] (the result holds both for the uniqe-winner
case and for the nonunique-winner case). For two candidates, the Bucklin rule is identical to
the plurality rule. Further, for two candidates CWB-$ is, in essence, identical to CWSB (the
only possible bribery is to swap the only two candidates), and the nonunique-winner variant
of CWB-$ is, in essence, identical to DWSB.

For fallback, membership of the problems in NP is clear, and NP-hardness follows by the
same arguments as for Bucklin, by considering the setting where every voter approves of all
candidates. ��

For the unweighted case, NP-completeness of BV- CUSB follows immediately from the
fact that the possible winner problem for Bucklin is NP-complete (see the papers of Konczak
and Lang [37], for the definition of the possible winner problem, and ofXia andConitzer [50],
for the result regarding Bucklin) and the fact that, for a given voting rule, the possible winner
problem reduces to the swap bribery problem [21]. However, on the one hand, NP-hardness
of the possible winner problem was established for the simplified variant of Bucklin’s rule
only (recall once more Footnote 4), and on the other hand, we can show that BV- CUSB is
NP-complete even for elections with just two voters.

Theorem 10 BV- CUSB is NP-complete in both winner models, even for elections with only
two voters.

Proof It is easy to see that BV- CUSB is in NP. We show NP-hardness by a reduction from
the following problem (which we will refer to as Single- Vote Swap Bribery): Given
a vote v (expressed as a preference order over some candidate set C), a swap-bribery price

123

Author's personal copy

Auton Agent Multi-Agent Syst (2015) 29:1091–1124 1117

function π for v, a designated candidate p ∈ C , and two nonnegative integers � and k, is
there a sequence of swaps of adjacent candidates, of total cost at most k, that ensure that p
is ranked among the top � positions in v? Elkind et al. [21] studied this problem as a variant
of the swap bribery problem for �-approval elections, where � is part of the input and the
election consists of a single vote; they established NP-completeness of the problem in their
Theorem 6.

Let I = (C, v, π, p, �, k) be an instance of Single- Vote Swap Bribery, where ‖C‖ =
m.We form aBucklin election E = (A, V) as follows. LetC ′ be a collection ofm−1 dummy
candidates with C ∩ C ′ = ∅. We set A = C ∪ C ′ ∪ {d}. We partition C ′ into two sets, C ′

1
and C ′

2, such that ‖C ′
1‖ = � − 1 and ‖C ′

2‖ = ‖C ′‖ − (� − 1) = m − �. (We pick any easily
computable partition.) We let V be a collection of two voters, v1 and v2, with price functions
π1 and π2:

1. v1 has preference order d > v > C ′ (i.e., v1 ranks d on the top position, then all the
candidates from C in the same order as v, and then all the candidates from C ′, in some
arbitrary-but-easy-to-compute order). For each two candidates x, y ∈ A, if both x and y
are in C then we set π1(x, y) = π(x, y), and otherwise we set π1(x, y) = k + 1.

2. v2 has preference order p > C ′
1 > d > C ′

2 > C − {p} (that is, v2 ranks p first, then
the � − 1 candidates from C ′

1 followed by d , followed by the remaining candidates from
C ′, which are then followed by the candidates from C − {p}). For each two candidates
x, y ∈ A, we set π2(x, y) = k + 1.

Note that in our electionmaj(V) = 2. Further, the only two candidates that are ranked among
the top m + 1 positions of both voters are p and d . Candidate d has Bucklin score � + 1 and,
thus, we have the following situation:

1. If p is ranked among the top � positions in v1, then p is the unique Bucklin winner of
the election.

2. If p is ranked in the (� + 1)st position by v1, then both p and d are Bucklin winners.
3. If p is ranked in a position worse than the (� + 1)st position by v1, then d is the unique

Bucklin winner.

We claim that p can become a Bucklin winner of election E through a swap bribery of
cost at most k if and only if I is a yes-instance of Single- Vote Swap Bribery.

From right to left: Assume that I is a yes-instance of Single- Vote Swap Bribery.
This means that there is a sequence of swaps within v after which p is ranked among the top
� positions in v. Applying the same swaps to v1 would cost the same and would put p among
the top � + 1 positions in v1, making p a Bucklin winner.

From left to right: Assume that there is a cost-at-most-k sequence of swaps within V
that make p a Bucklin winner. Since any swap that is not in the v part of v1 costs k + 1,
we have that d’s Bucklin score is still � + 1, and, thus, after the swaps, p’s Bucklin score
is in {2, . . . , � + 1}. Executing the same swaps within v shows that I is a yes-instance of
Single- Vote Swap Bribery. For the unique-winner model, simply move d one position
lower in v2. ��

To establish that BV- DUSB in the nonunique-winner model also is NP-complete for
the case of two voters, it suffices to use the unique-winner construction from the proof of
Theorem 10, but with the goal to prevent candidate d from being a Bucklin winner (the reader
can see that p is the only candidate who can threaten d without exceeding the given budget).
For the unique-winner destructive case, it suffices to use the BV- CUSB nonunique-winner
constructive construction, but with the goal to prevent candidate d from being a unique

123

Author's personal copy

1118 Auton Agent Multi-Agent Syst (2015) 29:1091–1124

Bucklin winner. Finally, as noted at the end of Sect. 2.1, NP-hardness of FV- CUSB and
FV- DUSB follows directly from the NP-hardness of BV- CUSB and BV- DUSB in both
winner models. We summarize these observations in the following corollary.

Corollary 5 BV- DUSB, FV- CUSB, and FV- DUSB are NP-complete, each in both winner
models, even for elections with only two voters.

5.3 Results for extension bribery

Let us now move on to the study of extension bribery, which here applies to fallback voting
only. The following observation will simplify our discussion.

Observation 1 In (constructive) extension bribery problems for the fallback rule it is never
profitable to extendany vote in anyotherway thanbyasking the voter to include the designated
candidate on the last unranked position.

Thus we will often specify the extension bribery price functions by simply giving the cost
of extending the vote by just one candidate (we will refer to this number as extension cost of
the vote).

Not surprisingly, the weighted variants of extension bribery are NP-complete.

Theorem 11 For elections with at least three candidates, both FV- CWEB and FV- DWEB

are NP-complete, each in both winner models.

Proof Obviously, FV- CWEB is in NP for any number of candidates. To show NP-hardness,
we use a reduction from Partition. Note that our reduction, which has three candidates, can
be modified so that an election with any number m ≥ 3 of candidates will be constructed:
Simply add the needed number of candidates to C and let all voters disapprove of the newly
added candidates. Let (A, (a1, . . . , ak)) with A = {1, . . . , k} and

∑k
i=1 ai = 2K be an

instance of Partition.
We define the fallback election (C, V)with the candidate setC = {b, c, p}, the designated

candidate is p, and we let V consist of k + 2 voters:

1. There is one voter v0 with the ballot p | {b, c}, with weight K , and extension cost K +1.
2. For each i, 1 ≤ i ≤ k, there is a voter vi who casts the ballot c | {b, p}, has weight

wi = ai , and extension cost ai .
3. There is one voter vk+1 with the ballot b | {c, p}, with weight K , and extension cost

K + 1.

The total sum of the voters’ weights in this election is 4K , so maj(V) = 2K + 1. The
weighted scores of the candidates in (C, V) are shown in Table 11a. As no candidate reaches
the majority threshold, candidate c wins by approval score and is the unique fallback winner
in (C, V).

We claim that there is a set A′ ⊆ A such that
∑

i∈A′ ai = ∑
i /∈A′ ai = K if and only if

p can be made a fallback winner by extension-bribing some of the voters without exceeding
the budget K .

From left to right: We assume that there is a set A′ ⊆ A such that
∑

i∈A′ ai = ∑
i /∈A′ ai =

K . We can change the votes from the voters vi where i ∈ A′ from c | {b, p} to c > p | {b}.
Each of these changes costs ai , so the overall sum of the costs is K . The candidates have the
weighted scores in the resulting election (C, V ′) that are shown in Table 11b. So p can be
made a fallback winner by extension-bribing voters in V without exceeding the budget K .

123

Author's personal copy

Auton Agent Multi-Agent Syst (2015) 29:1091–1124 1119

Table 11 Scores in the election
constructed in the proof of
Theorem 11

b c p

(a) Scores in (C, V)

score K 2K K

(b) Scores in (C, V ′)
score1 K 2K K

score2 K 2K 2K

From right to left: We assume that p is a fallback winner in election (C, V ′), where V ′ is
the changed voter list and the costs for the changes are at most K . Since the cost limit is K
the only changes that can be made, and that are profitable for p, are adding p to the approval
strategies of some of the voters v1, . . . , vk . The weighted score of candidate c cannot be
decreased, so p has to gain K points to tie with candidate c. Hence, there has to be a set
A′ ⊆ A such that

∑
i∈A′ ai = ∑

i /∈A′ ai = K and p has to be added to the approval strategies
of the voters vi where i ∈ A′.

For the unique-winner case of FV- CWEB, only the weight of v0 has to be changed to
K + 1 in the above election.

To show the result for the destructive case, for the nonunique-winner model it suffices to
use the same construction as for the constructive unique-winner case, with the goal to prevent
c fromwinning (it can be accomplished either by p or by b). Similarly, for the unique-winner
destructive case, we use the same construction as for the nonunique-winner constructive case,
with the goal to prevent c from being a unique winner (again, either p or b can be used for
this purpose). ��

On the other hand, the unweighted variant of the problem is in P. This is a nice complement
to the hardness results of Schlotter et al. [47] regarding support bribery. The main difference
regarding support bribery and extension bribery is that under the former we assume the voters
to rank all the candidates but declare as approved only some of their top candidates, whereas
in the latter (and, in general, in our model) we assume the voters to rank only the approved
candidates and completely disregard the disapproved candidates.

Theorem 12 FV- CUEB and FV- DUEB are in P, each in both winner models.

Proof Let us consider FV- CUEB first. We claim that Algorithm 4 solves the problem in
polynomial time. The algorithm considers each level s in which p could possibly become a
fallback winner and tries the cheapest bribery that might achieve this. The algorithm clearly
runs in polynomial time and its correctness follows from Observation 1.

It is clear how to adapt Algorithm 4 to the case of unique winners. Then, to solve the
destructive unique-winner variant of the problem, it suffices to check if any candidate other
than p can be made a fallback winner within the budget. For the destructive case in the
nonunique-winner model, simply check if either (a) candidate p that we want to prevent
from being a winner already is not a winner, or (b) there is some other candidate that can
become a unique fallback winner through extension bribery (use the above algorithm for the
unique-winner case).9 ��

9 We note that this approach to solving the destructive cases is not general, but it is easy to see that it works
for fallback.

123

Author's personal copy

1120 Auton Agent Multi-Agent Syst (2015) 29:1091–1124

Algorithm 4: Algorithm for fallback-CUEB
input : C set of candidates

V list of voters
Δ = (δ1, . . . , δn) list of extension bribery price functions
k budget
p designated candidate

output: “YES” if (C, V, Δ, k, p) ∈ fallback-CUEB
“NO” if (C, V, Δ, k, p) /∈ fallback-CUEB

1 foreach s ∈ {1, . . . , ‖C‖} do
2 let (v′

1, . . . , v
′
r) be a sublist of V containing voters that approve of at most s − 1 candidates and do

not approve of p, sorted by extension costs in ascending order;
3 foreach t ∈ {0, . . . , r} do
4 if changing v′

1, . . . v
′
t to approve p makes p a fallback winner then

5 if the sum of extension costs of v′
1, . . . , v

′
t is less than or equal to k then

6 return “YES”;
7

8

9 return “NO”;

5.4 Other campaign-management problems

There is a number of other problems that model various ways in which a political campaign
could be run. For example, motivated by the apparent hardness of swap bribery, Elkind et
al. [21] defined its much-simplified variant, shift-bribery, where every swap has to involve
the designated candidate p (that is, only the designated candidate can be “shifted” forward in
selected votes). The complexity of shift bribery was studied for a number of voting rules [12,
17,20,21], including Bucklin and fallback voting [47]. Interestingly, even though we gave
strong hardness results for swap bribery under Bucklin and fallback, Schlotter et al. [47] have
shown that shift bribery for these rules is in P.

Schlotter et al. [47] also introduced support bribery, a problem that models such actions
as increasing or decreasing the number of candidates that a given voter approves of. The
problem is very similar in spirit to extension bribery, but there is also a crucial difference: In
extension bribery we can extend each vote in any arbitrary way, whereas in support bribery
each voter has a complete preference order over the whole set of candidates and we can only
affect the number of candidates that he or she approves of. Further, in extension bribery we
can only increase the number of candidates approved by a given voter, but in support bribery
both increasing and decreasing the number of approved candidates is possible. Schlotter et
al. [47] show that this problem is NP-complete for fallback.10

6 Discussion and future research

We believe that the complexity of manipulation, bribery, and campaign management is par-
ticularly interesting for the case of Bucklin and fallback voting. These rules are, in an intuitive
sense, natural generalizations of the k-approval family of rules, for which many of our prob-
lems are (relatively) easy, and it is interesting to see how this generalization affects our

10 They also show that the problem is hard in the sense of parametrized complexity for two natural parameters
describing the extent of change to the number of approved candidates. Interestingly, they show the problem to
be fixed-parameter tractable if the number of approved candidates can either only increase or only decrease.

123

Author's personal copy

Auton Agent Multi-Agent Syst (2015) 29:1091–1124 1121

problems. Further, for many of the more complex rules, such as Borda and Copeland, manip-
ulation, bribery and campaign-management problems tend to be hard. In our study, we are
interested if the complexity of these problems for Bucklin and fallback is more similar to
that for k-approval rules or to that for rules such as Borda and Copeland. We have presented
specific results in the preceding sections and here we would like to give a high-level, intuitive
overview.

We compare Bucklin and fallback voting to k-approval, Borda, and Copeland. Under
k-approval, each candidate receives a point for each vote in which this candidate is ranked
among the top k positions (we assume that k is a fixed constant; for example, wemay consider
2-approval, 3-approval, and so on). Under the Borda rule, each voter v gives each candidate
c as many points as there are candidates that v ranks below c. Under Copeland, for each two
candidates c and d we check if more voters prefer c to d or the other way round. In the former
case c receives a point and in the latter case d does (for the sake of specificity, in case of a tie
we assume that neither of them receives a point, i.e., we consider the system that Faliszewski
et al. [29] call Copeland0). For each of these rules, the candidates that get the most points
are the winners.

First, let us consider the family of manipulation problems. In this case, Bucklin and fall-
back voting behave similarly to the k-approval family of rules (see the thesis of Lin [38]
for an overview of known results regarding the complexity of manipulating k-approval elec-
tions), and unlike Borda [6,14,16] and Copeland [14,31]. For example, for k-approval the
unweighted constructive coalitionalmanipulation problem is in P and forBorda andCopeland
it is NP-complete. Fallback voting is even easier to manipulate than most rules, including
those in the k-approval family, because for fallback voting constructive coalitional manip-
ulation is easy even for the case of weighted voters. This is so because in fallback voting
the voters have an easy way of passing maximum support to their most preferred candidate
without passing any support to anyone else. On the other hand, destructive coalitional manip-
ulation problems tend to be easy for most of the voting rules and so there is no significant
difference between Bucklin, fallback voting, and the other rules.

The complexity of bribery for Bucklin and fallback is similar to its complexity for the
k-approval family of rules (for large enough k, i.e., for k ≥ 4; we point the reader to the
thesis of Lin [38] for an overview of results regarding constructive bribery under k-approval
and to the work of Xia [49] for results regarding the destructive cases) and for Borda [13,27],
but differs from that for Copeland [29]. Informally put, for Bucklin, fallback, k-approval (for
large enough k), and for Borda constructive bribery is NP-complete and destructive bribery is
in P (with the exception of the variant with both weights and prices, which is NP-complete).
On the other hand, all variants of bribery are NP-complete for Copeland.

Finally, let us consider the complexity of campaign-management problems, focusing on
swap bribery and extension bribery. Swap bribery is NP-complete for essentially all our
rules [21] (i.e., for k-approval, k ≥ 2, Borda, Copeland, Bucklin, and fallback voting).
So Bucklin and fallback voting do not stand out in any particular way. The situation with
extension bribery is, however, significantly different. The problem is in P for fallback voting,
but is NP-complete for variants of Borda and Copeland adjusted to work in the setting where
voters rank some of their top candidates only [5] (however, we should mention that there is a
variant of Borda for which extension bribery is in P and that the weighted variant of extension
bribery is NP-complete for fallback voting). Additionally, it is known that shift bribery for
Bucklin and fallback voting are in P [47] (analogously to the case of the k-approval family
of rules [21]), whereas shift bribery is NP-complete for both Borda and Copeland.

All in all, we conclude that, typically, the complexity of manipulation, bribery, and
campaign-management problems for Bucklin and fallback voting is similar to that for

123

Author's personal copy

1122 Auton Agent Multi-Agent Syst (2015) 29:1091–1124

simpler rules, such as k-approval. However, it is also the case that the proofs for Buck-
lin and fallback voting are often more involved than those for k-approval and, certainly, not
all results translate.

It is natural to ask what is the value of worst-case analysis of manipulation, bribery, and
campaignmanagement for voting rules in general, and for Bucklin and fallback voting specif-
ically. There are several answers. On the one hand, NP-hardness results can be seen as some
forms of (rather weak) safety guarantees against the respective forms of manipulation. From
a more practical point of view, however, such results should rather be interpreted as justifi-
cations for designing and using heuristic approaches when solving the respective problems.
Further, reductions that prove NP-hardness typically show those aspects of a particular prob-
lem and a particular voting rule that are most difficult to analyze algorithmically. Identifying
such features of a problem can help in developing heuristics and approximation algorithms.
From a yet different perspective, results such as those presented in this paper contribute to
understanding the nature of the considered voting rules (as we have argued in this section,
for the case of Bucklin and fallback voting the comparison to k-approval rules is particularly
interesting).

As far as future work goes, we believe that the most interesting and promising direction
would be to study heuristic and approximation algorithms for our problems. Such attacks
were already taken in the literature regarding other problems and/or voting rules [16,44,48].
We believe that one should try to develop appropriate algorithms not only for those problems
for which we have NP-hardness results, but even for those where polynomial-time algorithms
exist. Specifically, it would be very interesting to develop distributed heuristics that require
very limited communication from the agents involved in manipulating election results.

7 Conclusions

We have given an in-depth study of the complexity of manipulation, bribery, and campaign
management for Bucklin and fallback voting. Our results complement those regarding con-
trol, campaign management, and possible/necessary winner problems and, in effect, we now
have an almost complete picture of the (worst-case) complexity of Bucklin and fallback vot-
ing for all the standard election problems (there is only a single result missing for one of the
control problems). Having this complete picture is particularly useful for Bucklin and fall-
back voting: For control problems they are among the hardest voting rules, but for bribery and
manipulation—togetherwith k-approval voting—they often lay on the edge of (in)tractability.
It is thus interesting to see their complexity for each of the problems separately.

Acknowledgments We thank Edith Hemaspaandra and Lane A. Hemaspaandra for interesting discussions
on these results after a RIT/URTheory Canal talk. This workwas supported in part byDFGGrant RO 1202/15-
1, by a DAAD Grant for a PPP Project in the PROCOPE Program, by NCN Grants 2012/06/M/ST1/00358
and 2011/03/B/ST6/01393, and by AGH University Grant 11.11.230.124.

References

1. Bartholdi III, J., & Orlin, J. (1991). Single transferable vote resists strategic voting. Social Choice and
Welfare, 8(4), 341–354.

2. Bartholdi III, J., Tovey, C., & Trick, M. (1989). The computational difficulty of manipulating an election.
Social Choice and Welfare, 6(3), 227–241.

3. Bartholdi III, J., Tovey, C., & Trick, M. (1992). How hard is it to control an election?Mathematical and
Computer Modelling, 16(8/9), 27–40.

123

Author's personal copy

Auton Agent Multi-Agent Syst (2015) 29:1091–1124 1123

4. Baumeister, D., Erdélyi, G., Hemaspaandra, E., Hemaspaandra, L., & Rothe, J. (2010). Computational
aspects of approval voting. In J. Laslier & R. Sanver (Eds.), Handbook on approval voting, chap. 10 (pp.
199–251). Berlin: Springer.

5. Baumeister, D., Faliszewski, P., Lang, J., &Rothe, J. (2102). Campaigns for lazy voters: Truncated ballots.
Proceedings of the 11th International Joint Conference on Autonomous Agents and Multiagent Systems,
IFAAMAS (pp. 577–584).

6. Betzler, N., Niedermeier, R., & Woeginger, G. (2011). Unweighted coalitional manipulation under the
Borda rule is NP-hard. Proceedings of the 22nd International Joint Conference on Artificial Intelligence
(pp. 55–60).

7. Brams, S., & Fishburn, P. (1978). Approval voting. American Political Science Review, 72(3), 831–847.
8. Brams, S., & Fishburn, P. (1983). Approval voting. Boston: Birkhäuser.
9. Brams, S., & Sanver, R. (2006). Critical strategies under approval voting: Who gets ruled in and ruled

out. Electoral Studies, 25(2), 287–305.
10. Brams, S., & Sanver, R. (2009). Voting systems that combine approval and preference. In S. Brams, W.

Gehrlein, & F. Roberts (Eds.), The mathematics of preference, choice, and order: Essays in honor of Peter
C. Fishburn (pp. 215–237). Berlin: Springer.

11. Brandt, F., Conitzer, V., & Endriss, U. (2013). Computational social choice. In G. Weiß (Ed.),Multiagent
systems (2nd ed., pp. 213–283). Cambridge, MA: MIT Press.

12. Bredereck, R., Chen, J., Faliszewski, P., Nichterlein, A., & Niedermeier, R. (2014). Prices matter for
the parameterized complexity of shift bribery. Proceedings of the 28th AAAI Conference on Artificial
Intelligence (pp. 1398–1404). AAAI Press.

13. Brelsford, E., Faliszewski, P., Hemaspaandra, E., Schnoor, H., & Schnoor, I. (2008). Approximability
of manipulating elections. In: Proceedings of the 23rd AAAI Conference on Artificial Intelligence (pp.
44–49). AAAI Press.

14. Conitzer, V., Sandholm, T., &Lang, J. (2007).When are electionswith few candidates hard tomanipulate?
Journal of the ACM, 54(3), 14.

15. Conitzer, V., & Walsh, T. (2014). Barriers to manipulation. In F. Brandt, V. Conitzer, U. Endriss, J. Lang,
& A. Procaccia (Eds.), Handbook of computational social choice. Cambridge: Cambridge University
Press.

16. Davies, J., Katsirelos, G., Narodytska, N., & Walsh, T. (2011). Complexity of and algorithms for Borda
manipulation. Proceedings of the 25th AAAI Conference on Artificial Intelligence (pp. 657–662).

17. Dorn, B., & Schlotter, I. (2012). Multivariate complexity analysis of swap bribery. Algorithmica, 64(1),
126–151.

18. Duggan, J., & Schwartz, T. (2000). Strategic manipulability without resoluteness or shared beliefs:
Gibbard–Satterthwaite generalized. Social Choice and Welfare, 17(1), 85–93.

19. Dutta, B., Jackson,M.,&LeBreton,M. (2001). Strategic candidacy and voting procedures.Econometrica,
69(4), 1013–1037.

20. Elkind, E., & Faliszewski, P. (2010). Approximation algorithms for campaign management. Proceedings
of the 6th International Workshop on Internet and Network Economics (pp. 473–482). Springer, Lecture
Notes in Computer Science #6484.

21. Elkind, E., Faliszewski, P., & Slinko, A. (2009). Swap bribery. Proceedings of the 2nd International
Symposium on Algorithmic Game Theory (pp. 299–310). Springer, Lecture Notes in Computer Science
#5814

22. Erdélyi, G., & Fellows, M. (2010). Parameterized control complexity in Bucklin voting and in fallback
voting. In V. Conitzer & J. Rothe (Eds.),Proceedings of the 3rd InternationalWorkshop onComputational
Social Choice (pp. 163–174). Universität Düsseldorf.

23. Erdélyi, G., Fellows, M., Rothe, J., & Schend, L. (2012). Control complexity in Bucklin and fallback vot-
ing. Technical Report arXiv:1103.2230 [cs.CC], Computing Research Repository, arXiv:org/corr/ (2012).
March, 2011. Revised August, 2012. An extended version merging the CATS-2010, COMSOC-2010,
AAMAS-2011, and SEA-2012 papers [26,22,25,44] has been accepted for publication in Journal of
Computer and System Sciences.

24. Erdélyi, G., Nowak, M., & Rothe, J. (2009). Sincere-strategy preference-based approval voting fully
resists constructive control and broadly resists destructive control.Mathematical Logic Quarterly, 55(4),
425–443.

25. Erdélyi, G., Piras, L., &Rothe, J. (2011). The complexity of voter partition in Bucklin and fallback voting:
Solving three open problems. Proceedings of the 10th International Joint Conference on Autonomous
Agents and Multiagent Systems. IFAAMAS (pp. 837–844).

26. Erdélyi, G., & Rothe, J. (2010). Control complexity in fallback voting. Proceedings of Computing: the
16th Australasian Theory Symposium (pp. 39–48). Australian Computer Society Conferences in Research
and Practice in Information Technology Series, vol. 32, no. 8.

123

Author's personal copy

http://arxiv.org/abs/1103.2230
http://arxiv.org/abs/org/corr/

1124 Auton Agent Multi-Agent Syst (2015) 29:1091–1124

27. Faliszewski, P., Hemaspaandra, E., &Hemaspaandra, L. (2009). How hard is bribery in elections? Journal
of Artificial Intelligence Research, 35, 485–532.

28. Faliszewski, P., Hemaspaandra, E., & Hemaspaandra, L. (2010). Using complexity to protect elections.
Communications of the ACM, 53(11), 74–82.

29. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., & Rothe, J. (2009). Llull and Copeland voting
computationally resist bribery and constructive control. Journal of Artificial Intelligence Research, 35,
275–341.

30. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., & Rothe, J. (2009). A richer understanding of the
complexity of election systems. In S. Ravi & S. Shukla (Eds.), Fundamental problems in computing:
Essays in honor of professor Daniel J. Rosenkrantz, chap. 14 (pp. 375–406). Dordrecht: Springer.

31. Faliszewski, P., Hemaspaandra, E., & Schnoor, H. (2010). Manipulation of Copeland elections. Proceed-
ings of the 9th International Conference on Autonomous Agents and Multiagent Systems (pp. 367–374).
International Foundation for Autonomous Agents and Multiagent Systems.

32. Faliszewski, P., & Procaccia, A. (2010). AI’s war on manipulation: Are we winning? AI Magazine, 31(4),
53–64.

33. Faliszewski, P., & Rothe, J. (2014). Control and bribery. In F. Brandt, V. Conitzer, U. Endriss, J. Lang, &
A. Procaccia (Eds.),Handbook of computational social choice. Cambridge: Cambridge University Press.

34. Garey,M., & Johnson, D. (1979).Computers and intractability: A guide to the theory of NP-completeness.
New York: W. H. Freeman and Company.

35. Gibbard, A. (1973). Manipulation of voting schemes. Econometrica, 41(4), 587–601.
36. Hemaspaandra, E., Hemaspaandra, L., & Rothe, J. (2007). Anyone but him: The complexity of precluding

an alternative. Artificial Intelligence, 171(5–6), 255–285.
37. Konczak, K., & Lang, J. (2005). Voting procedures with incomplete preferences. Proceedings of the

Multidisciplinary IJCAI-05 Workshop on Advances in Preference Handling (pp. 124–129).
38. Lin,A. (2012). Solving hard problems in election systems. Ph.D. thesis, Rochester Institute of Technology,

Rochester, NY.
39. Menton, C. (2013). Normalized range voting broadly resists control. Theory of Computing Systems, 53(4),

507–531.
40. Menton, C., & Singh, P. (2013). Control complexity of Schulze voting. Proceedings of the 23rd Interna-

tional Joint Conference on Artificial Intelligence (pp. 286–292). AAAI Press/IJCAI.
41. Papadimitriou, C. (1995). Computational complexity (2nd ed.). Reading, MA: Addison-Wesley.
42. Parkes, D., & Xia, L. (2012). A complexity-of-strategic-behavior comparison between Schulze’s rule and

ranked pairs. Proceedings of the 26th AAAI Conference on Artificial Intelligence (pp. 1429–1435). AAAI
Press.

43. Rothe, J. (2005). Complexity theory and cryptology. An introduction to cryptocomplexity. EATCS texts in
theoretical computer science. Berlin: Springer.

44. Rothe, J., & Schend, L. (2012). Control complexity in Bucklin, fallback, and plurality voting: An exper-
imental approach. Proceedings of the 11th International Symposium on Experimental Algorithms (pp.
356–368). Springer, Lecture Notes in Computer Science #7276.

45. Rothe, J., & Schend, L. (2013). Challenges to complexity shields that are supposed to protect elections
against manipulation and control: A survey. Annals of Mathematics and Artificial Intelligence, 68(1–3),
161–193.

46. Satterthwaite, M. (1975). Strategy-proofness and Arrow’s conditions: Existence and correspondence
theorems for voting procedures and social welfare functions. Journal of Economic Theory, 10(2), 187–
217.

47. Schlotter, I., Faliszewski, P., & Elkind, E. (2011). Campaign management under approval-driven voting
rules. Proceedings of the 25th AAAI Conference on Artificial Intelligence (pp. 726–731).

48. Walsh, T. (2011). Where are the hard manipulation problems? Journal of Artificial Intelligence Research,
42, 1–29.

49. Xia, L. (2012). Computing the margin of victory for various voting rules. Proceedings of the 13th ACM
Conference on Electronic Commerce (pp. 982–999). ACM Press.

50. Xia, L., & Conitzer, V. (2011). Determining possible and necessary winners given partial orders. Journal
of Artificial Intelligence Research, 41, 25–67.

51. Xia, L., Zuckerman,M., Procaccia, A., Conitzer, V., & Rosenschein, J. (2009). Complexity of unweighted
coalitional manipulation under some common voting rules. Proceedings of the 21st International Joint
Conference on Artificial Intelligence (pp. 348–353). IJCAI.

123

Author's personal copy

	Complexity of manipulation, bribery, and campaign management in Bucklin and fallback voting
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Bucklin and fallback elections
	2.2 Basics from complexity theory

	3 Manipulation in Bucklin and fallback voting
	3.1 Definitions and overview of results
	3.2 Results for weighted manipulation
	3.3 Results for unweighted manipulation

	4 Bribery in Bucklin and fallback voting
	4.1 Definitions and overview of results
	4.2 Results for bribery

	5 Campaign management
	5.1 Definitions and overview of results
	5.2 Results for swap bribery
	5.3 Results for extension bribery
	5.4 Other campaign-management problems

	6 Discussion and future research
	7 Conclusions
	Acknowledgments
	References

