
CHAPTER 7

Control and Bribery in Voting

Piotr Faliszewski and Jörg Rothe

7.1 Introduction

In this chapter we study control and bribery, two families of problems modeling various
ways of manipulating elections. Briefly put, control problems model situations where
some entity, usually referred to as the chair or the election organizer, has some ability
to affect the election structure. For example, the chair might be able to encourage new
candidates to join the election, or might be able to prevent some voters from casting their
votes. On the other hand, bribery models situations where the structure of the election
stays intact (we have the same candidates and the same voters), but some outside agent
pays the voters to change their votes. Naturally, such manipulative actions, dishonestly
skewing election results, are undesirable. Thus it is interesting to know if there are so-
called complexity shields against these attacks (see also Chapter 6 on manipulation and,
relatedly, Section 4.3.3 in the book chapter by Baumeister and Rothe (2015)). That is,
it is interesting to know the computational complexity of recognizing whether various
forms of such attacks are possible or not. However, there are also other interpretations
of control and bribery, many of them quite positive.

In this chapter we survey results on the complexity of control and bribery in elec-
tions, providing an overview of the specific problems studied, sketching sample proofs,
and reviewing some approaches to dealing with the computational hardness of these
control and bribery problems (see also Sections 4.3.4 and 4.3.5 in the book chapter
by Baumeister and Rothe (2015)). Seeking ways of dealing with the computational
hardness of control and bribery may seem surprising at first. However, on one hand,
if we interpret control and bribery as modeling attacks on elections, then we would
like to know the limitations of our complexity shields. On the other hand, if we take
other interpretations of control and bribery, then we simply would like to know how to
solve these problems. We survey some classical results on control in Section 7.3,
on bribery in Section 7.4, and then briefly discuss their various applications in
Section 7.5.
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7 .2 preliminaries 147

Table 7.1. Three types of preference profiles required by different voting rules

(a) A Borda election
points: 5 4 3 2 1 0

voter 1: a c b f e d
voter 2: b a f c e d
voter 3: c d b a f e
voter 4: e d b f c a
voter 5: e d c b f a

winner: b with score 16

(b) An approval election
a b c d e f

voter 1: (1, 0, 0, 0, 0, 0)
voter 2: (1, 1, 0, 0, 0, 0)
voter 3: (1, 1, 1, 1, 0, 0)
voter 4: (0, 0, 0, 1, 1, 0)
voter 5: (0, 0, 0, 0, 1, 0)

AV score: 3 2 1 2 2 0

(c) A fallback election
level: 1 2 3 4

voter 1: a
voter 2: b a
voter 3: c d b a
voter 4: e d
voter 5: e

winner: a on level 4

7.2 Preliminaries

We start by recalling various voting rules, including preference-based voting rules
and (variants of) approval voting. For the former, an election (A, R) is given by a set
A of m alternatives (or candidates) and a preference profile R = (�1, . . . ,�n) over
A that collects n votes, each expressing a linear preference order over A. That is,
letting N = {1, . . . , n} be the set of voters, �i gives voter i’s preference order of the
alternatives. For example, the ranking a �1 b �1 c says that voter 1 (strictly) prefers
alternative a to alternative b, and b to c. From now on we omit stating “�i” explicitly
and simply rank the alternatives in a vote from left (most preferred) to right (least
preferred). That is, instead of, say, a �1 b �1 c we simply write a b c. Also, for (A, R)
an election and A′ ⊆ A, we write (A′, R) to denote the election with alternatives
A′ and the votes in R restricted to A′. For example, if (A, R) is the election from
Table 7.1(a) consisting of five voters who rank six alternatives and A′ = {b, c, d}, then
(A′, R) = ({b, c, d}, (c b d, b c d, c d b, d b c, d c b)).

We briefly recall some voting rules, see Chapter 2 for more details. Positional scoring
rules are defined by an m-alternative scoring vector  σ = (σ1, σ2, . . . , σm), where the σi

are nonnegative integers with σ1 � σ2 � · · · � σm. Each alternative scores σi points for
each vote where it is ranked in the ith position, and whoever scores the most points wins.
Examples are plurality voting with scoring vector (1, 0, . . . , 0), veto (aka antiplurality)
with (1, . . . , 1, 0), k-approval with (1, . . . , 1, 0, . . . , 0) having a 1 in each of the first
k � m positions (note that 1-approval is plurality), k-veto, which is the same as (m − k)-
approval (note that 1-veto is veto), and Borda count with (m − 1, m − 2, . . . , 0). For
example, in the election given in Table 7.1(a), e wins under plurality; d under 2-
approval; b under 3-approval; b, c, and f under veto; and b under Borda (with a
Borda score of 16, whereas a, c, d, e, and f score, respectively, 11, 15, 12, 12, and 9
points).

Under approval voting (or AV), proposed by Brams and Fishburn (1978, 2007),
instead of using preference orders the voters specify sets of alternatives they approve
of. Typically, such votes are represented as m-dimensional 0/1-vectors, where each
position corresponds to an alternative and 1-entries mean approval of respective alter-
natives. All alternatives with the most approvals win. For example, for the approval
vectors given in Table 7.1(b), a is the approval winner with a score of 3. A version
of approval voting (dubbed sincere-strategy preference-based approval voting (or SP-
AV) by Erdélyi et al. (2009)) combines approval information with preference-order
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148 7 control and bribery in voting

information (the voters rank the candidates that they approve of). The rule was intro-
duced by Brams and Sanver (2006) and, in essence, is the same as approval, but the
additional preference-order information is used to deduce voter behavior when the
candidate set changes (we omit detailed discussion and point the reader to the original
papers and to the survey of Baumeister et al. (2010)).

Range voting (or RV) works just as approval voting, except that entries of the vectors
under k-range voting come from the set {0, 1, . . . , k} rather than from the set {0, 1}.
Normalized range voting (or NRV) is a variant of RV that alters the votes so that the
potential impact of each vote is maximized (see, e.g., the work of Menton, 2013).

Let us now move back to rules based on preference orders and, in particular, to
those rules that are based on pairwise comparisons of alternatives. A Condorcet win-
ner is an alternative that is preferred to every other alternative by a strict majority of
votes. For example, in the election from Table 7.1(a), c is preferred to every other
alternative by three of the five voters and thus is the Condorcet winner. It is easy to
see that there is at most one Condorcet winner in an election, but it is possible that
there is none.1 A voting rule is Condorcet-consistent if it elects the Condorcet winner
whenever there is one. If there is no Condorcet winner in a given preference profile,
many of the known Condorcet-consistent rules elect those candidates that are closest to
being Condorcet winners, one way or another. For example, under Copelandα voting,
α ∈ [0, 1], we organize a tournament among the candidates in the following way: Each
pair of candidates “plays” against each other and the one that is preferred by more
voters wins and receives a point (in case of a tie, both get α points). In the end, the
candidates with the highest number of points win. If we omit voter 1 from the election
in Table 7.1(a) then d is the unique Copelandα winner for α = 0 and α = 1/2 (with a
Copelandα score of 3 if α = 0, and of 3.5 if α = 1/2), but both c and e are Copelandα

winners with a score of 5 for α = 1. Other Condorcet-consistent rules are, for exam-
ple, the maximin rule (aka Simpson’s rule), ranked pairs due to Tideman (1987), or
Schulze’s rule (a rule proposed by Schulze (2011), which satisfies many normative
properties).

Other voting rules follow yet other principles, e.g., single transferable vote (STV)
proceeds in stages and eliminates the “weakest” candidates until only the winner
remains. We omit the details and point the reader to Chapter 2 instead. Under Bucklin
voting we first seek the smallest value  such that there is candidate ranked among
top  positions by a strict majority of the voters, and then declare as winners those
candidates that have highest -approval scores (or, under simplified Bucklin voting,
those candidates that are ranked among top  positions by some majority of the voters).
Fallback voting, introduced by Brams and Sanver (2009), is a rule that combines
Bucklin voting with approval voting (the voters rank only the candidates they approve
of and Bucklin is used; if there are no Bucklin winners—due to the fact that voters
do not have to rank all the candidates—fallback outputs the approval winners). For
example, in the partial rankings given in Table 7.1(c), a alone reaches a strict majority

1 If one requires voting rules to always have at least one winner, Condorcet voting (which elects the Condorcet
winner whenever there is one, and otherwise no one wins) would not be a voting rule. However, we take the
point of view that voting rules may have empty winner sets. Note that it has become a tradition to study (at
least) plurality, Condorcet, and approval on each new approach and each new idea regarding election control
(see, e.g., the papers of Bartholdi et al., 1992; Hemaspaandra et al., 2007; Faliszewski et al., 2011c).
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7 .3 control 149

of !5/2" + 1 = 3 votes (namely, on the fourth level) and thus is the fallback winner.
However, if the first voter approved only of f instead of only of a, then no candidate
would reach a majority and fallback would output a, b, d, and e, the approval winners
of the election.

In Sections 7.3 and 7.4, we will define a large variety of decision problems, each
related to some specific control or bribery scenario. All these problems are members
of NP, the class of problems that can be solved in nondeterministic polynomial time,
and they will be classified to be either in P or NP-complete.2 Unlike, for instance, in
the case of Kemeny, Dodgson, and Young elections (which we do not consider here,
as their winner problems are not in P—see Chapters 4 and 5), the winner(s) can be
determined efficiently for all voting systems described earlier.

7.3 Control

Every election needs to be organized, and whoever is responsible for doing so can have
some influence on the outcome of the election by changing its structure. We will refer
to this person, or authority, as the chair of the election, and to the way the election
structure is changed by the chair as control type or control action. Many types of control
that the chair might exert are conceivable. We present those that have been studied in
the literature, starting with the four most important ones.

7.3.1 Constructive Control by Adding/Deleting Candidates/Voters

Bartholdi et al. (1992) were the first to introduce electoral control and to study it
in various scenarios from a computational perspective. In particular, they defined
constructive control types, where the chair’s goal in exerting some control action is to
make a given candidate p the unique winner of the resulting election.3 It is common to
assume that the chair has complete knowledge of all votes.

One control action the chair might exert is to change the candidate set, either by
adding some new candidates from a given set of spoiler candidates (hoping to make
p’s most competitive rivals weaker relative to p), or to delete up to k candidates from
the given election (to get rid of p’s worst rivals). For the former, Bartholdi et al.
(1992) originally defined a variant that allows adding an unlimited number of spoiler
candidates. To be in sync with the other control problems (e.g., control by deleting
candidates), Hemaspaandra et al. (2009) defined a variant of this problem where a
bound k on the number of spoiler candidates that may be added is given. We will see
later that the complexity of the resulting problems can sharply differ.

2 A problem B is NP-hard if every NP problem A reduces to B, where “reduction” always refers to a polynomial-
time many-one reduction, that is, a polynomial-time function r mapping instances of A to instances of B such
that for each x, x ∈ A ⇐⇒ r(x) ∈ B. B is NP-complete if it is NP-hard and in NP.

3 As we do here, control problems have commonly, most especially in the earlier papers on control, been studied
in their unique-winner variant. Alternatively, many papers on control consider the nonunique-winner (or co-
winner, or simply winner) variant where the chair’s goal is merely to make the designated candidate a winner.
The complexity of control problems is usually the same in both models, requiring only minor adjustments to
the proofs.
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150 7 control and bribery in voting

Definition 7.1. Let f be a voting rule. In the Constructive-Control-by-Adding-
an-Unlimited-Number-of-Candidates problem for f (f -CCAUC), we are given
(a) a set A of qualified candidates, a set B of spoiler candidates, where A ∩ B = ∅,
and an election (A ∪ B, R) and (b) a preferred candidate p ∈ A. We ask if we can
choose a subset B ′ ⊆ B of the spoiler candidates such that p is the unique f -winner
of the election (A ∪ B ′, R). The Constructive-Control-by-Adding-Candidates
problem for f (f -CCAC) is defined similarly: In addition to (a) and (b) we are also
given (c) a bound k ∈ N, and we ask if there is a subset B ′ ⊆ B of spoiler candidates
such that |B ′| � k and p is the unique f -winner of (A ∪ B ′, R). In the Constructive-
Control-by-Deleting-Candidates problem for f (f -CCDC), we are given (a) an
election (A, R), (b) a preferred candidate p ∈ A, and (c) a bound k ∈ N. We ask if p

can be made a unique f -winner of the election resulting from (A, R) by deleting at
most k candidates.

The issue of control by changing the candidate set is very natural and, indeed, hap-
pens in real-life political elections. For example, it is widely speculated that “adding”
Nader to the 2000 U.S. presidential election had the effect of ensuring Bush’s victory
(otherwise, Gore would have won). Similarly, there are known cases where “spoiler”
candidates were added to political elections to confuse the voters (see, e.g., the New
York Times article of Lacey (2010) for a reported example). It is also easy to imag-
ine control by deleting candidates: Some of the candidates who perform poorly in
pre-election polls may be forced (or persuaded) to withdraw.

Example 7.1. For a Borda-CCAUC instance, let (A ∪ B, R) be the election from
Table 7.1(a), where A = {a, b, c, d} is the set of qualified candidates and B = {e, f } is
the set of spoiler candidates. Table 7.2(a) shows the restriction (A, R) of this election
to the qualified candidates, which has the Borda winner c scoring 9 points, while the
Borda scores of a, b, and d, respectively, are 4, 6, and 8. Supposing that b is the chair’s
favorite candidate, we have a yes-instance of Borda-CCAUC, since adding both spoiler
candidates makes b the unique Borda winner (see Table 7.1(a)).

To turn this into a Borda-CCAC instance, we in addition need to specify an addition
limit, k. If k = 1, we have a yes-instance of the problem: Though the chair will not
succeed by adding e (which gives the election in Table 7.2(c), still won by c), adding f

(giving the election in Table 7.2(b)) will make b the unique Borda winner with a score
of 13, while a, c, d, and e score 8, 12, 11, and 6 points.

Finally, consider again the Borda election in Table 7.1(a) with winner b, and suppose
the chair, who now wants to make c win, is allowed to delete one candidate. Deleting
the current champion, b, will reach this goal. Alternatively, the chair can delete f (see
Table 7.2(c)) to turn c into the unique winner with a Borda score of 12, while the Borda
scores of a, b, d, and e, respectively, are reduced to 8, 11, 9, and 10. Thus this is a
yes-instance of the problem Borda-CCDC.

The chair might also change the voter set, either by encouraging further voters to
participate (knowing that their votes will be beneficial for p), or by excluding certain
voters from the election (knowing that deleting their votes will help p). In real life,
political parties often try to influence the outcome of elections by such actions (e.g.,
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7 .3 control 151

Table 7.2. CCAUC, CCAC, and CCDC for the Borda election in Table 7.1(a)

(a) Without spoilers e and f

points: 3 2 1 0

voter 1: a c b d
voter 2: b a c d
voter 3: c d b a
voter 4: d b c a
voter 5: d c b a

winner: c (score 9)

(b) Deleting e

points: 4 3 2 1 0

voter 1: a c b f d
voter 2: b a f c d
voter 3: c d b a f
voter 4: d b f c a
voter 5: d c b f a

winner: b (score 13)

(c) Deleting f

points: 4 3 2 1 0

voter 1: a c b e d
voter 2: b a c e d
voter 3: c d b a e
voter 4: e d b c a
voter 5: e d c b a

winner: c (score 12)

think of targeted “get-out-the-vote” drives on one hand, and of voter suppression efforts
or even disenfranchisement of voters, on the other).

Definition 7.2. Let f be a voting rule. In the Constructive-Control-by-Adding-
Voters problem for f (f -CCAV), we are given (a) a list R of already registered
votes, a list S of as yet unregistered votes, and an election (A, R + S), where “pro-
file addition” means concatenation of profiles, (b) a preferred candidate p ∈ A, and
(c) a bound k ∈ N. We ask if we can choose a sublist S ′ ⊆ S of size at most k such
that p is the unique f -winner of (A, R + S ′). In the Constructive-Control-by-
Deleting-Voters problem for f (f -CCDV), we are given (a) an election (A, R),
(b) a preferred candidate p ∈ A, and (c) a bound k ∈ N, and we ask if we can make
p a unique f -winner of the election resulting from (A, R) by deleting no more than k

votes.

Example 7.2. Look again at the Borda election in Table 7.1(a) and assume that the
chair wants to make c win. If one voter may be deleted, the chair’s goal can be reached
by deleting voter 2: c then is the unique Borda winner with a score of 13, while a,
b, d, e, and f score only 7, 11, 12, 11, and 6 points, so this is a yes-instance of the
problem Borda-CCDV. On the other hand, if a were the chair’s favorite choice, the
chair would not succeed even if two votes may be deleted, giving rise to a no-instance
of Borda-CCDV. As an example of a Borda-CCAV instance, suppose voters 1 and 2
from the election in Table 7.1(a) are registered already, but 3, 4, and 5 are not. The
current winner is a. Suppose the chair wants to make c win and is allowed to add two
voters. Adding any single one of the as yet unregistered voters is not enough (the best
c can reach, by adding voter 3, is to tie with a and b for first place, each having 11
points). Adding either {3, 4} or {4, 5} is not successful either. However, adding {3, 5}
makes c the unique Borda winner with a score of 14, while a, b, d, e, and f score only
11, 13, 8, 7, and 7 points.

Depending on the voting rule, it may never (for no preference profile at all) be
possible for the chair to successfully exert some control action (e.g., constructive
control by deleting voters) in the sense that p can be turned (by deleting voters) from
not being a unique winner into being one. If that is the case, we say this voting rule
is immune to this type of control. Otherwise (i.e., if there is at least one preference
profile where the chair can successfully exert this control action), we say this voting
rule is susceptible to this type of control. For a voting rule f that is susceptible to
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152 7 control and bribery in voting

some type of control (e.g., to constructive control by adding voters), f is said to be
vulnerable (respectively, resistant) to this control type if the corresponding problem
(e.g., f -CCAV) is in P (respectively, NP-hard).

Immunity results appear to be very desirable. Indeed, if a voting rule is immune to a
given type of control, then it is impossible to compromise its result by a corresponding
type of malicious action. Nonetheless, as we will soon see, immunity can also bring
some undesired side effects. First, however, let us argue that immunity for candidate
control is rare. This is so due to the study of strategic candidacy of Dutta et al.
(2001) (see also recent work on strategic candidacy of Lang et al. (2013) and Brill and
Conitzer (2015)). They have considered a setting where the candidates have preferences
regarding election outcomes, and can strategically choose to join the race or not.
Dutta et al. (2001) have shown that for most typical election rules there are settings
where some candidates would prefer not to participate in the election. In effect, such
rules cannot be immune to candidate control. Nonetheless, in some rare cases (e.g.,
for Condorcet and approval voting) immunity results for candidate control hold (see
Table 7.3).

For the case of voter control, immunity is not only rare, but also is utterly undesirable.
Indeed, it is natural to expect that if we add sufficiently many voters with the same
preference order, then their most preferred candidate becomes a winner. Formally, this
is known as voting rule continuity (or, as the Archimedean property). Continuity says
that if some candidate c is a winner in some election (A, R), then for every election
(A, R′), there is a natural number t such that c is a winner in an election of the form
(A, R′ + tR), where tR refers to a profile of t copies of profile R. See, for example,
the work of Smith (1973).

The first voting rules studied with respect to control were plurality, Condorcet, and
approval voting. The following theorem summarizes some of the results obtained for
them by Bartholdi et al. (1992) and Hemaspaandra et al. (2007).

Theorem 7.3 (Bartholdi et al., 1992; Hemaspaandra et al., 2007).

1. Condorcet and approval voting are immune and plurality is resistant to constructive
control by adding (respectively, adding an unlimited number of) candidates.

2. Condorcet and approval voting are vulnerable and plurality is resistant to constructive
control by deleting candidates.

3. Condorcet and approval voting are resistant and plurality is vulnerable to constructive
control by both adding and deleting voters.

These immunity claims generally follow from the fact that Condorcet and approval
voting satisfy the (“unique” version of the) Weak Axiom of Revealed Preference,
which states that a unique winner p in a set A of alternatives always is also a unique
winner among each subset A′ ⊆ A including p. Hemaspaandra et al. (2007) identify
many links (i.e., implications and equivalences) among the susceptibility/immunity
statements for the control types defined previously and to be defined in Section 7.3.2.
We refrain from repeating them here but point the reader to Figure 4.16 in the book by
Rothe et al. (2011) for an overview.

The vulnerability claims in Theorem 7.3 follow by simple P algorithms. For example,
that approval-CCDC is in P follows from this algorithm: On input ((A, R), p, k), if p
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7 .3 control 153

already is the unique winner in (A, R) (which is easy to test), output “yes”; otherwise,
if no more than k candidates have at least as many approvals as p, output “yes” (as p

can be made a unique winner by deleting them all), and else output “no.” By contrast,
vulnerability proofs for the partitioning cases to be defined in Section 7.3.2 are often
much more involved (and are omitted here).

The resistance claims in Theorem 7.3 typically follow by reductions from NP-
complete problems such as Exact-Cover-by-3-Sets (X3C), which given a base set
B = {b1, . . . , b3k}, k > 0, and a sequence S = (S1, . . . , Sn) of 3-element subsets of B,
asks whether B can be exactly covered by k sets chosen from S . For example, to show
that approval-CCDV is NP-hard, let (B,S) be an instance of X3C. Let j = |{Si ∈
S | bj ∈ Si}| for each j , 1 � j � 3k. Construct from (B,S) the election (A, R) with
A = B ∪ {p} and R consisting of the following 2n voters: (1) For each i, 1 � i � n,
one voter in R approves of all candidates in Si and disapproves of all other candidates;
(2) there are n voters v1, . . . , vn in R such that, for each i, 1 � i � n, vi (a) approves
of p, and (b) approves of bj if and only if i � n − j . Thus, every candidate in (A, R)
has exactly n approvals. If there is an exact cover for B, then deleting the k votes from
R corresponding to the exact cover turns p into the unique winner. Conversely, suppose
that p can be turned into a unique approval winner by deleting at most k votes from R

(where we may assume that none of them approves of p, so only votes from group (1)
have been deleted). For p to become the unique approval winner, every bj ∈ B must
have lost at least one approval. Thus, the deleted votes correspond to an exact cover
for B.

The next system to be comprehensively studied regarding control was Copelandα .

Theorem 7.4 (Faliszewski et al., 2009c). For each rational number α, 0 � α � 1,
Copelandα is resistant to all types of control from Definitions 7.1 and 7.2, except
for α ∈ {0, 1} where Copelandα is vulnerable to constructive control by adding an
unlimited number of candidates.

The most interesting point to note in Theorem 7.4 is that Copelandα-CCAUC is in
P for α = 0 and α = 1, but is NP-complete for all other values of α. The vulnerability
results are proven by the following simple P algorithm: On input ((A ∪ B, R), p),
set D1 to be the set of all b ∈ B such that the Copelandα score of p in ({b, p}, R)
is 1; initialize D to be D1; and then successively delete every b from D such that the
Copelandα score of p in (A ∪ D, R) is no greater than that of b. Correctness of the
algorithm follows from (1) the observation that for each D ⊆ B, whenever p is the
unique Copelandα winner in (A ∪ D, R), then so is p in (A ∪ (D1 ∩ D), R), and (2) a
more involved argument showing that if p is the unique winner in (A ∪ D, R) for some
D ⊆ D1, yet the above algorithm computes a set D′ such that p is not a unique winner
in (A ∪ D′, R), then this leads to a contradiction. On the other hand, NP-hardness
of Copelandα-CCAUC for 0 < α < 1 follows by a reduction from the NP-complete
problem Vertex-Cover (and is omitted here).

Unlike Copelandα-CCAUC, Copelandα-CCAC is NP-complete for all (rational)
values of α ∈ [0, 1]. In fact, Copelandα with 0 < α < 1 (including the original system
by Copeland (1951)) is the first family of voting rules known to be fully resistant
to all types of constructive control, including those to be defined in Section 7.3.2.
Other voting rules having this property have followed: SP-AV (Erdélyi et al., 2009),
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Table 7.3. The complexity of control problems for various voting rules

Voting Rule C
A

U
C

C
A

C

C
D

C

C
PC

-T
E

C
PC

-T
P

C
R

PC
-T

E

C
R

PC
-T

P

C
A

V

C
D

V

C
PV

-T
E

C
PV

-T
P

C D C D C D C D C D C D C D C D C D C D C D

plurality R R R R R R R R R R R R R R V V V V V V R R

(Bartholdi et al., 1992; Hemaspaandra et al., 2007)

Condorcet I V I V V I V I V I V I V I R V R V R V R V

(Bartholdi et al., 1992; Hemaspaandra et al., 2007)

approval I V I V V I V I I I V I I I R V R V R V R V

(Hemaspaandra et al., 2007)

Copelandα

for α = 0 V V R V R V R V R V R V R V R R R R R R R R

0 < α < 1 R V R V R V R V R V R V R V R R R R R R R R

α = 1 V V R V R V R V R V R V R V R R R R R R R R

(Faliszewski et al., 2009c)

maximin V V R V V V – – – – – – – – R R R R – – – –

(Faliszewski et al., 2011b)

Borda – – R V R V – – – – – – – – R V – V – V – –

(Russel, 2007; Elkind et al., 2011a; Loreggia et al., 2014; Chen et al., 2015)

SP-AV R R R R R R R R R R R R R R R V R V R V R R

(Erdélyi et al., 2009)

fallback R R R R R R R R R R R R R R R V R V R R R R

(Erdélyi and Rothe, 2010; Erdélyi et al., 2011; see also Erdélyi et al., 2015a)

Bucklin R R R R R R R R R R R R R R R V R V R R R S

(Erdélyi et al., 2011; see also Erdélyi et al., 2015a)

RV I V I V V I V I I I V I I I R V R V R V R V

(Menton, 2013)

NRV R R R R R R R R R R R R R R R V R V R R R R

(Menton, 2013)

Schulze R S R S R S R V R V R V R V R V R V R R R R

(Parkes and Xia, 2012; Menton and Singh, 2013)

Key: “I” means immunity, “S” susceptibility, “V” vulnerability, and “R” resistance. We write “–” if a given result
is not directly available in the literature.

fallback and Bucklin voting (Erdélyi and Rothe, 2010; Erdélyi et al., 2011, 2015a),
NRV (Menton, 2013), and Schulze voting (Parkes and Xia, 2012; Menton and Singh,
2013), as shown in Table 7.3.

7.3.2 The Partitioning Cases and Destructive Control

In addition to control by adding/deleting candidates/voters, Bartholdi et al. (1992) also
introduced various types of control by partitioning either candidates or voters, modeled
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7 .3 control 155

by elections proceeding in two stages. While their original definitions were a bit unclear
about what happens when more than one candidate wins some first-stage pre-election,
Hemaspaandra et al. (2007) defined two rules for how to handle such pre-election ties:
TE (“ties eliminate”) says that whenever at least two candidates are tied for winner
in a pre-election, no candidate proceeds to the final stage from it (i.e., only unique
pre-election winners move forward); TP (“ties promote”) says that all pre-election
winners, no matter how many, proceed forward.

Definition 7.3. Let f be a voting rule. In the Constructive-Control-by-Runoff-
Partition-of-Candidates problem for f under TE or TP (f -CCRPC-TE or f -
CCRPC-TP), we are given (a) an election (A, R), and (b) a preferred candidate p ∈ A.
We ask if we can partition A into A1 and A2 such that p is the unique f -winner of
the election (W1 ∪ W2, R), where Wi , i ∈ {1, 2}, is the set of those pre-election (Ai, R)
winners that are promoted to the final stage according to the tie-handling rule (TE
or TP). The Constructive-Control-by-Partition-of-Candidates problem for f

under TE or TP (f -CCPC-TE or f -CCPC-TP) is defined similarly, except that we ask
if p can be made a unique f -winner of the election (W1 ∪ A2, R) by partitioning A

into A1 and A2, i.e., there is only one pre-election (A1, R) whose winners proceed
(according to the tie-handling rule, TE or TP) to the final stage to face all of A2.

Example 7.5. Let (A, R) be the Borda election in Table 7.1(a) again, and let c be the
distinguished candidate the chair wants to win. This is a yes-instance in all four cases,
for both CCRPC and CCPC, each in TE and TP, as witnessed by the partition of A

into A1 = {a, f } and A2 = {b, c, d, e}. It does not matter whether we are in the TE
or TP model,4 since both subelections have a unique winner: a alone wins (A1, R),
and c alone wins (A2, R) (with a score of 9, while b, d, and e score only 7, 6, and
8 points). For CCRPC, both subelection winners, c and a, proceed to the final stage,
which c wins. For CCPC, the winner of the first subelection, a, faces all candidates of
A2 in the final stage, and as we have seen in Table 7.2(c), the unique Borda winner of
({a, b, c, d, e}, R) is c, again as desired by the chair.

The analogues of f -CCRPC-TE/TP where not the candidates but the voters are
partitioned model a very basic kind of gerrymandering. (Note that it would not make
sense to define voter-partition analogues of f -CCPC-TE/TP, at least not for natural
voting systems f .5)

Definition 7.4. Let f be a voting rule. In the Constructive-Control-by-Partition-
of-Voters problem for f under TE or TP (f -CCPV-TE or f -CCPV-TP), we are
given (a) an election (A, R), and (b) a preferred candidate p ∈ A. We ask if R can
be partitioned into R1 and R2 such that p is the unique f -winner of (W1 ∪ W2, R),

4 By contrast, partitioning A into A′
1 = {a, b, c} and A′

2 = {d, e, f } would reveal a difference between the two
tie-handling models: Since b and c tie for winning (A′

1, R), they both proceed to the final stage in model TP
(where they face e, the winner of (A′

2, R), and c wins the final stage), but b and c eliminate each other in model
TE (so e alone proceeds to the final stage and wins).

5 In such an analogue, given an election (A, R) and p ∈ A, we would partition R into R1 and R2 just as in
Definition 7.4, but there is only one pre-election, say (A, R1), whose TE/TP-winners W1 would then face all
candidates in the final stage, yet (W1 ∪ A, R) = (A, R) is just the original election.
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156 7 control and bribery in voting

where Wi , i ∈ {1, 2}, is the set of those pre-election (A, Ri) winners that are promoted
to the final stage according to the tie-handling rule (TE or TP).

Example 7.6. Again looking at the Borda election (A, R) in Table 7.1(a) with preferred
candidate c, the chair will succeed (in both TE and TP) by partitioning R into R1 =
{1, 2, 4, 5} and R2 = {3}: b alone wins (A, R1) (with a score of 13, while a, c, d, e,
and f score only 9, 10, 8, 12, and 8 points), and c alone wins (A, R2). Thus they both
proceed to the final stage where c beats b by 3 to 2.

The proofs that show the complexity of control by partitioning candidates or voters
are often based on similar constructions as analogous proofs for the case of deleting
candidates or voters, but usually are more involved technically.

For each constructive control problem, there is also a destructive variant, introduced
by Hemaspaandra et al. (2007), where the chair’s goal is to preclude a given candidate
from being the unique winner of the election resulting from the chair’s control action.
We denote the destructive control problems analogously, replacing the initial “C” by a
“D,” as, for example, in DCDC for “destructive control by deleting candidates.” (In this
problem, it is forbidden to delete the designated candidate p; otherwise, the problem
would be trivial.)

7.3.3 Overview and Some Other Approaches to Control

Table 7.3 summarizes the control complexity results for some prominent voting rules.
In most cases we have full knowledge of the complexity of all the basic types of
control, but for Borda and maximin some types of control were never studied, and for
Bucklin and Schulze for some types of control there are only susceptibility results in
the literature.

We already mentioned that besides Copelandα voting, 0 < α < 1, also SP-AV
(Erdélyi et al., 2009), fallback and Bucklin voting (Erdélyi and Rothe, 2010; Erdélyi
et al., 2011, 2015a), NRV (Menton, 2013), and Schulze voting (Parkes and Xia, 2012;
Menton and Singh, 2013) are resistant to all constructive control types. Among those,
Schulze has many vulnerabilities to destructive control types, but SP-AV is vulnerable
to only three of them (DCAV, DCDV, and DCPV-TE), and fallback, Bucklin, and
NRV even to only two (DCAV and DCDV), where the case of Bucklin-DCPV-TP is
still open. Note that SP-AV is a somewhat unnatural system (as has been discussed by
Baumeister et al. (2010) in detail), due to a rule introduced by Erdélyi et al. (2009)
that, to cope with certain control actions, can move the voters’ approval lines after they
have cast their votes. It may be argued that NRV has a similar issue (though perhaps
to a lesser extent), since after the voters have cast their votes (namely, their range
voting vectors), the normalization process can change the points the alternatives will
score from the votes. Fallback’s drawback, on the other hand, is that it is a hybrid of
two “pure” voting rules, Bucklin and approval, and requires the voters to report both
approval vectors and rankings. All three voting systems have the disadvantage that
it is rather complicated (even though far less complicated than in Schulze voting) to
determine the winners; for example, it is hardly conceivable that many of the voters in
a real-world political election would be fully aware of the effect of normalization in
NRV. But this is the price to pay if we wish to have a (relatively) natural voting rule
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7 .3 control 157

with P-time winner determination that is resistant to as many control actions as these
voting rules are resistant to. On the other hand, if one is willing to accept an artificial
voting rule, Hemaspaandra et al. (2009) have shown how to combine well-known rules
to obtain ones that are resistant to all types of control. While their method produces
rules that are not attractive in practice (even though they satisfy some natural normative
properties), it suggests that indeed there might exist natural voting rules with P-time
winner determination that are resistant to all types of control considered here.

Now, let us quickly point to some related work and to other approaches to con-
trol. Meir et al. (2008) study control for multiwinner voting rules. In the multiwinner
setting, we are given an election (A, R) and an integer k, and the goal is to pick a
“committee” of k winners. Multiwinner voting rules can be used to choose parliaments
(or other collective bodies), to choose finalists in competitions, or even within recom-
mendation systems (see, e.g., the work of Lu and Boutilier (2011a) for the application
in recommendation systems and the work of Elkind et al. (2014a) for a recent gen-
eral discussion of multiwinner voting). To study control in the multiwinner setting (and
analogous approaches apply to other manipulative scenarios), Meir et al. (2008) assume
that the election chair associates some utility value with each candidate and his or her
goal is to ensure that the sum of the utilities of the candidates in the elected committee
is as high as possible. As a side effect, this approach creates a natural unification of
the constructive and destructive cases: In the constructive case the chair would have
positive utility only for the most preferred candidate, whereas in the destructive setting
the chair would have positive, equal utilities for all the candidates except the despised
one.

Faliszewski et al. (2011b) provide a unified framework to capture “multimode
control attacks” that simultaneously combine various of the control actions considered
here. Specifically, in their setting the chair can, for example, simultaneously add some
candidates and remove some voters. One of the conclusions of this work is that,
typically, the complexity of such a multimode control attack is the same as that of
the hardest basic control type involved. In particular, if a voting rule is vulnerable to
several basic types of control, it is also vulnerable if the chair can perform these control
types simultaneously (i.e., coordinating the attacks is easy). However, this conclusion
is based on studying a number of natural voting rules and is not a general theorem
(indeed, such a general theorem does not hold).

Fitzsimmons et al. (2013) study the complexity of control in the presence of manip-
ulators, both in the case where the chair and the manipulators coordinate their actions
and in the case where they compete with each other. While all the related cooperative
problems are in NP, they show that the competitive problems can be complete for the
second and the third level of the polynomial hierarchy for suitably designed artificial
voting systems (though their complexity is much lower for many natural voting sys-
tems). Another approach to unifying different types of strategic behavior is due to Xia
(2012b), who proposes a general framework that is based on so-called vote operations
and can be used to express, for example, bribery and control by adding or deleting
voters. Xia (2012b) shows that if the votes are generated i.i.d. with respect to some
distribution, then, on the average, the number of vote operations (e.g., the number of
voters that need to be added) necessary to achieve a particular effect (e.g., ensuring
that some candidate is a winner) is either zero (the effect is already achieved), or is
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158 7 control and bribery in voting

proportional to the square root of the number of original voters, or is linear with respect
to the number of original voters, or the effect is impossible to achieve.

Going in a somewhat different direction, Chen et al. (2014) consider control by
adding candidates in a combinatorial setting, where one can add whole groups of
voters at unit cost. They show that even for the plurality rule, for which standard voter
control is very easy, the combinatorial setting is challenging (indeed, combinatorial
control by adding voters is NP-hard for plurality even in the settings where the groups
of voters to add contain at most two voters each).

Hemaspaandra et al. (2014b) established the first control-related dichotomy result,
showing for which pure scoring rules CCAV is easy to solve and for which this
problem is NP-complete (however, Faliszewski et al. (2013) study voter control in
weighted elections and in the technical report version of their paper show a dichotomy
result as well). This complements similar dichotomy results of Hemaspaandra and
Hemaspaandra (2007) on manipulation and of Betzler and Dorn (2010) and Baumeister
and Rothe (2012) on the possible winner problem.

Some researchers investigate not only the classical complexity, but also the parame-
terized complexity of control problems, with respect to such parameters as the solution
size (e.g., “number of added voters”) or the election size (e.g., “number of candidates”);
for example, see the work of Liu et al. (2009) for a discussion of plurality, Condorcet,
and approval; Liu and Zhu (2010, 2013) for maximin, Copeland, Borda, Bucklin, and
approval; Betzler and Uhlmann (2009) and Faliszewski et al. (2009c) for Copelandα;
Erdélyi et al. (2015a) for Bucklin and fallback; and Hemaspaandra et al. (2013b) for
Schulze and ranked-pairs voting. On the other hand, Brelsford et al. (2008) study the
approximability of control, manipulation, and bribery. Faliszewski et al. (2013) discuss
approximation algorithms for voter control under k-approval.

Faliszewski et al. (2011b, 2011a) and Brandt et al. (2010a) study to what extent
complexity shields for manipulation and control disappear in elections with domain
restrictions, such as in single-peaked or nearly single-peaked electorates (see also the
book chapter by Hemaspaandra et al., 2015). Magiera and Faliszewski (2014) show
similar results for single-crossing electorates.

Hemaspaandra et al. (2013a) compare the decision problems for manipulation,
bribery, and control with their search versions and study conditions under which
search reduces to decision. They also notice that two destructive control types that
previously have been viewed as distinct are in fact identical (in both the unique-
winner and the nonunique-winner model): DCRPC-TE = DCPC-TE (and, in only the
nonunique-winner model, they additionally show equality of another pair of control
types: DCRPC-TP = DCPC-TP).

So far, almost all the research on the complexity of control has been theoretical,
establishing NP-hardness of various problems. Recently, Rothe and Schend (2012)
have initiated the experimental study of control (see also the survey by Rothe and
Schend (2013) and the work of Erdélyi et al. (2015b)), showing that NP-hard control
problems can, sometimes, be solved efficiently in practice (cf. the work of Walsh
(2011a) for such studies on manipulation).

Finally, there are a number of problems that are very closely related to control, but
that, nonetheless, are usually not classified as “standard control types.” These problems
include, for example, candidate cloning (see the brief discussion in Section 7.5), fixing
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knockout tournaments (see Chapter 19 for more details), the problem of controlling
sequential elections by choosing the order of voting on related issues (see the work
of Conitzer et al., 2009a), and online control in sequential elections (see the work
of Hemaspaandra et al., 2012a, 2012b), which is inspired by online manipulation in
sequential elections due to Hemaspaandra et al. (2014a). Ideas originating from election
control have also found applications in other settings. For example, Baumeister et al.
(2012b, 2013b) have studied control for the case of judgment aggregation (for more
details on judgment aggregation, see Chapter 17 and the book chapter by Baumeister
et al. (2015)).

7.4 Bribery

Let us now move on to the study of bribery in elections. As opposed to the case of
control, this time it is not possible to affect the structure of the election at hand (that is,
the sets of candidates or voters cannot be changed), but it is possible to change some of
the votes instead. Election bribery problems, introduced by Faliszewski et al. (2009b),
model situations where an outside agent wants a particular alternative to win and pays
some of the voters to vote as the agent likes. The problem name, bribery, suggests
settings where an outside agent is dishonestly affecting election results, but there are
other interpretations of these problems as well. For example, the formal framework
of bribery can capture scenarios such as political campaign management and election
fraud detection. We discuss such aspects of bribery (and control) in Section 7.5; for now
we focus on the algorithmic properties of bribery problems without making judgments
as to their morality.

The briber’s task has two main components. First, the briber needs to decide who to
bribe. Second, the briber has to decide how to change the chosen votes. In that sense,
election bribery combines a control-like action (picking which voters to affect) with a
manipulation-like action (deciding how to change the selected votes; see Chapter 6 and
Section 4.3.3 in the book chapter by Baumeister and Rothe (2015) for more details on
manipulation). Furthermore, it might be the case that while a voter agrees to change her
vote in some ways, she may refuse to change it in some other ways (e.g., the voter might
agree to swap the two least preferred alternatives, but not to swap the two most preferred
ones). The following definition, based on the ones given by Faliszewski et al. (2009b)
and—later—by Elkind et al. (2009c),6 tries to capture these intuitions. (A careful reader
should see that this definition is not sufficient for algorithmic applications; however, it
will be a convenient base for further refinements.)

Definition 7.5. Let f be a voting rule. In the priced bribery problem for f , we are
given (a) an election (A, R), where the set of voters is N = {1, . . . , n} and R contains
a preference order �i for each i ∈ N , (b) a preferred alternative p ∈ A, (c) a budget
B ∈ N, and (d) a collection of price functions � = (π1, . . . , πn). For each i, 1 � i � n,
and each preference order � over A, πi(�) is the cost of convincing the ith voter to

6 To provide historical perspective, let us mention that the paper of Faliszewski et al. (2009b) was presented in
2006 at the 21st National Conference on Artificial Intelligence (AAAI).
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160 7 control and bribery in voting

cast vote � (we require that for each i, 1 � i � n, πi(�i) = 0). We ask if there exists a
preference profile R′ = (�′

1, . . . ,�′
n) such that (i) p is an f -winner of election (A, R′),

and (ii)
∑n

i=1 πi(�′
i) � B.7

Informally speaking, in condition (i) we require that the bribery is successful (p
becomes a winner) and in condition (ii) we require that it is cheap enough (i.e., within
our budget B). However, it is impossible to use this definition directly in our algorithmic
analysis. The problem is that given an election (A, R), each price function should be
defined for |A|! different arguments. If we represented each price function by listing all
the |A|! argument-value pairs, the encoding of the problem would grow exponentially
and for most natural voting rules the problem could be solved by brute force (yet
without giving any real insight into the nature of election bribery). In other words, to
make the problem interesting (and practical), we have to limit our attention to families
of price functions that can be described succinctly. To this end, researchers have mostly
focused on the following families of functions (in the following description we use
the notation from Definition 7.5; we use the terms discrete and $discrete to unify the
discussion of bribery problems even though these terms did not appear in the original
papers):

1. We say that the price functions are discrete if for each πi , 1 � i � n, and for each
preference order �, it holds that πi(�) = 0 if � = �i , and πi(�) = 1 otherwise.

2. We say that the price functions are $discrete if for each πi , 1 � i � n, there is an
integer ci such that for each preference order �, it holds that πi(�) = 0 if � = �i , and
πi(�) = ci otherwise. (Each voter can have a different value ci .)

3. We say that the price functions are swap-bribery price functions if for each πi , 1 � i � n,
and for each two alternatives x, y ∈ A, there is a value c

{x,y}
i such that for each preference

order �, πi(�) is the sum of the values c
{x,y}
i such that � ranks x and y in the opposite

order than �i does.

That is, discrete functions give cost one for changing a vote (irrespective of which
vote it is or how it is changed), $discrete functions give a (possibly different) cost for
changing each vote (irrespective of the nature of the change), and swap-bribery price
functions define a cost for swapping each two alternatives and, then, sum up these
costs. Clearly, functions in each of these families can be described succinctly.

From the historical perspective, the first paper on the complexity of bribery in
elections (due to Faliszewski et al., 2009b) focused largely on discrete and $discrete
functions. Swap-bribery functions were introduced first by Faliszewski et al. (2009c)
in the context of so-called irrational votes, and were later carefully studied by Elkind
et al. (2009c) in the standard setting of linear preference orders. Naturally, one can also
define other families of cost functions (and some researchers—including the ones just
cited—have done so) but in this chapter we will focus on these three.

Definition 7.5 can be applied to weighted elections as well. In such a case, it is
tempting to introduce some explicit relation between the voters’ weights and the costs

7 As opposed to the case of control, research on bribery typically focuses on the nonunique-winner model; the
unique-winner model has been considered in addition in some papers on bribery (see, e.g., Faliszewski et al.,
2015).
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7 .4 bribery 161

of changing their votes. However, doing so is not necessary and we assume that such
dependencies, if needed, are embedded in the price functions.

7.4.1 Bribery, Weighted-Bribery, $Bribery, Weighted-$Bribery, and
Swap-Bribery

We focus on the bribery problems that can be derived using discrete, $discrete, and
swap-bribery price functions. For the former two, consider the following definition.

Definition 7.6 (Faliszewski et al., 2009b). Let f be a voting rule. By f -Bribery we
denote the priced bribery problem with discrete price functions and by f -$Bribery
we denote the priced bribery problem with $discrete price functions. The problems
f -Weighted-Bribery and f -Weighted-$Bribery are defined in the same way, but
for weighted elections.

Example 7.7. Consider the Borda election in Table 7.1(a) and suppose that each voter
has the same unit price, and that the goal is to ensure the victory of f through bribery.
Prior to the bribery, b has 16 points and f has 9. It suffices to bribe voter 3 to cast vote
f d a c e b. (Afterward, b, e, and f have score 13 each, and a, c, and d have score 12
each.) This means that there is a successful bribery with cost one. On the other hand, if
voters 1 and 5 had cost one and the remaining voters had cost three each, then it would
be better to bribe voters 1 and 5 to shift f to the top positions in their votes.

For swap-bribery price functions, Elkind et al. (2009c) have defined the following
problem (they have not studied swap bribery for weighted elections).

Definition 7.7 (Elkind et al., 2009c). Let f be a voting rule. By f -Swap-Bribery
we denote the priced bribery problem with swap-bribery price functions.

Example 7.8. Consider the Borda election in Table 7.1(a) once again. This time, by
applying swap bribery, we want to ensure victory of candidate d. We assume that
swapping each two adjacent candidates has unit cost. Prior to the bribery, b has 16
points, c has 15 points, d and e have 12 points, a has 11 points, and f has 9 points. We
perform the bribery as follows: We swap b in the preference order of voter 1 first with
f , then with e, and finally with d. This way b loses three points and d, e, and f gain
one point each. Thus b, d, and e have score 13 each, a and f score less than 13 points,
but c still has 15 points. So, next we swap c and d in the preference order of voter 3.
This way both c and d have score 14 and they both tie as winners. This is a successful
swap bribery of cost four (and, indeed, it is the cheapest successful swap bribery for d

in this scenario).

To familiarize ourselves with bribery problems further, let us consider their com-
plexity for the plurality rule.

Theorem 7.9. For plurality voting it holds that:

1. Bribery, Weighted-Bribery, and $Bribery are each in P, but Weighted-$Bribery
is NP-complete (Faliszewski et al., 2009b), and

2. Swap-Bribery is in P (Elkind et al., 2009c).

It is easy to see that plurality-Bribery can be solved by (repeating in a loop)
the following greedy algorithm: If the preferred alternative is not a winner already,
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162 7 control and bribery in voting

then pick one of the current winners and bribe one of her voters to vote for the
preferred alternative. Unfortunately, such greedy approaches do not work for plurality-
Weighted-Bribery. For example, consider an algorithm that works in iterations and
in each iteration bribes the heaviest voter among those that vote for one of the current
winners. Let (A, R) be an election where A = {p, a, b, c} and where we have 9 weight-
1 voters voting for a, a single weight-5 voter voting for b, and a single weight-5 voter
voting for c. Clearly, it suffices to bribe the two weight-5 voters, but the heuristic would
bribe five voters with weight 1 each. On the other hand, bribing the heaviest voter
first does not always work either (Faliszewski et al. (2009d) give a counterexample
with A = {p, a, b}, p receiving no votes at first, a receiving three weight-2 votes
and one weight-1 vote, and b receiving two weight-3 votes; to make p a winner it
suffices to bribe one weight-2 vote and one weight-3 vote, but the heuristic bribes three
votes). Nonetheless, a combination of these two heuristics does yield a polynomial-time
algorithm for plurality-Weighted-Bribery.

Let us consider some weighted plurality election and let us say that somehow we
know that after an optimal bribery, our preferred alternative p has at least T points.
Naturally, all the other alternatives have to end up with at most T points (and we can
assume that at least one of them will get exactly T points). Thus for each alternative a

that has more than T points, we should keep bribing its heaviest voters until its score
decreases to at most T (this corresponds to running the bribe the current winner’s
heaviest voter heuristic). If, after bringing each alternative to at most T points, the
preferred alternative still does not have T points, we bribe the globally heaviest voters
to vote for the preferred alternative. We do so until the preferred alternative reaches
at least T points (this corresponds to running the bribe the heaviest voter heuristic).
If we chose the value of T correctly, by this point we would have found an optimal
bribery strategy. But how do we choose T ? If the weights were encoded in unary, we
could try all possible values, but doing so for binary-encoded weights would give an
exponential-time algorithm. Fortunately, we can make the following observation: For
each alternative a, we bribe a’s voters in the order of their nonincreasing weights.
Thus, after executing the above-described strategy for some optimal value T , a’s score
is in the set {a’s original score, a’s score without its heaviest voter, a’s score without
its two heaviest voters, . . .}. Thus it suffices to consider values T of this form only (for
each candidate) and to pick one that leads to a cheapest bribery.

It is an easy exercise for the reader to adapt the plurality-Weighted-Bribery
algorithm to the case of plurality-$Bribery. On the other hand, solving plurality-
Swap-Bribery requires a somewhat different approach. The reason is that under
Swap-Bribery it might not always be optimal to push our preferred candidate to the
top of the votes, but sometimes it may be cheaper and more effective to replace some
high-scoring alternatives with other, low-scoring ones. To account for such strategies,
Elkind et al. (2009c) compute, for each vote v, the lowest cost of replacing v’s current
top-alternative with each other one, and then run a flow-based algorithm of Faliszewski
(2008) to find the bribing strategy. We omit the details here.

For plurality-Weighted-$Bribery, it is easy to see that the problem is in NP and
so we only show NP-hardness. We give a reduction from the Partition problem
to plurality-Weighted-$Bribery. Recall that in the Partition problem the input
consists of a sequence of positive integers that sum up to some value S, and we ask
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Table 7.4. The complexity of f -Bribery for various voting rules

f f -Bribery reference

plurality P Faliszewski et al. (2009b)
veto P Faliszewski et al. (2009b)
2-approval P Lin (2012)
k-veto, k ∈ {2, 3} P Lin (2012)
k-approval, k � 3 NP-complete Lin (2012)
k-veto, k � 4 NP-complete Lin (2012)
Borda NP-complete Brelsford et al. (2008)
STV NP-complete Xia (2012a)
Bucklin NP-complete Faliszewski et al. (2015)
fallback NP-complete Faliszewski et al. (2015)
maximin NP-complete Faliszewski et al. (2011b)
Copeland NP-complete Faliszewski et al. (2009c)
Schulze NP-complete Parkes and Xia (2012)
ranked pairs NP-complete Xia (2012a)

approval NP-complete Faliszewski et al. (2009b)
range voting NP-complete follows from the approval result

if it is possible to partition this sequence into two subsequences that both sum up to
S/2 (naturally, for that S needs to be even). Let (s1, . . . , sn) be the input sequence and
let S = ∑n

i=1 si . We form an election (A, R), with A = {p, d} and with R containing
n voters voting for d; for each i, 1 � i � n, the ith voter has weight si and her price
function is “it costs si to change the vote.” The budget B is S/2. In effect, any bribery
of cost at most B can give p a score of at most S/2. The only such briberies that would
ensure that p is among the winners must give p score exactly S/2, by solving the original
Partition instance. This result is particularly useful because its proof easily adapts
to most other typical voting rules, showing that Weighted-$Bribery is NP-complete
for them as well.

Theorem 7.9 suggests that, perhaps, for various voting rules f , not only is f -Bribery
easy but so are even its more involved variants, f -$Bribery and f -Weighted-
Bribery. However, in-depth study of f -Bribery has shown that the problem is
NP-complete for most natural voting rules f . We survey these results in Table 7.4.
Naturally, the hardness results for Bribery immediately transfer to $Bribery and
Weighted-Bribery.

Theorem 7.10 (Faliszewski et al., 2009b). For each voting rule f , f -Bribery reduces
to f -$Bribery and to f -Weighted-Bribery.

Furthermore, for the case of $Bribery we can inherit multiple hardness results from
the coalitional manipulation problem, through a simple reduction.

Definition 7.8 (Conitzer et al., 2007). Let f be a voting rule. In the (constructive,
coalitional) f -Manipulation problem we are given (a) an election (A, R), (b) a
preferred alternative p ∈ A, and (c) a collection R′ of voters with unspecified preference
orders. We ask if it is possible to ensure that p is an f -winner of election (A, R + R′)
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164 7 control and bribery in voting

by setting the preference orders of the voters in R′. The (constructive, coalitional) f -
Weighted-Manipulation problem is defined analogously, but for weighted elections,
where the manipulators’ weights are given.

Theorem 7.11 (Faliszewski et al., 2009b). For each voting rule f , f -Manipula-
tion reduces to f -$Bribery, and f -Weighted-Manipulation reduces to f -
Weighted-$Bribery.

For the case of Swap-Bribery, hardness results are even more abundant. Elkind
et al. (2009c) have shown that the problem is NP-complete for k-approval (for k � 2)8

and for Borda, Copeland, and maximin (for the latter three systems, NP-hardness holds
even for Shift-Bribery, a special case of Swap-Bribery where the swaps have to
involve the preferred candidate). Furthermore, the Swap-Bribery problem generalizes
the Possible-Winner problem, which itself generalizes the Manipulation problem.

Definition 7.9 (Konczak and Lang, 2005). Let f be a voting rule. In the f -Possible-
Winner problem we are given (a) an election (A, R), where the voters in R are
represented through (possibly) partial orders, and (b) an alternative p ∈ A. We ask if
it is possible to extend the partial orders in R to linear orders in such a way that p is an
f -winner of the resulting election.

Theorem 7.12 (Elkind et al., 2009c). For each voting rule f , f -Possible-Winner
reduces to f -Swap-Bribery.

Xia and Conitzer (2011a) have shown hardness of Possible-Winner for a number
of voting rules (including STV, ranked pairs, Borda, Copeland, maximin, and many
other rules); Betzler and Dorn (2010) together with Baumeister and Rothe (2012) show
a dichotomy result regarding the complexity of Possible-Winner for pure scoring
rules, obtaining hardness for almost all of them (see Chapter 10 and Section 4.3.2 in
the book chapter by Baumeister and Rothe (2015) for more details on the Possible-
Winner problem and on related issues). By Theorem 7.12, these hardness results
immediately translate to hardness results for Swap-Bribery and the same voting rules.

Such an overwhelming number of hardness results (either shown directly or implied
by Theorems 7.11 and 7.12) suggests that, perhaps, Swap-Bribery is too general
a problem. That is why Elkind et al. (2009c) defined Shift-Bribery, a variant of
Swap-Bribery where, as mentioned earlier, the only legal briberies shift the preferred
candidate up in the voters’ preference orders. While this problem turned out to typi-
cally be NP-complete as well, Elkind et al. (2009c), Elkind and Faliszewski (2010), and
Schlotter et al. (2011) have found some interesting polynomial-time algorithms, exact
and approximate, and Bredereck et al. (2014b) have studied the parameterized com-
plexity of Shift-Bribery (see Section 7.5 for more motivating discussions regarding
Shift-Bribery).

We now show that (the optimization variant of) Borda-Shift-Bribery can be effi-
ciently approximated within a factor of 2.

Theorem 7.13 (Elkind et al., 2009c). There is a polynomial-time 2-approximation
algorithm for the cost of a cheapest shift bribery under Borda voting.

8 The result for k = 2 follows from the work of Betzler and Dorn (2010); for k = 1 the problem is in P; for
k = m/2, where m is the number of alternatives, Elkind et al. (2009c) have shown hardness even for the case of
a single voter.
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Proof sketch. Consider an instance of our problem where the goal is to ensure candidate
p’s victory. By definition, the only possible actions are shifting p forward in (some of)
the votes (costs are specified through swap-bribery price functions where swaps that
do not involve p have infinite cost and we can think of shifting p forward in terms of
its swaps with other candidates).

We start with two observations. First, there is a polynomial-time algorithm that
given an instance of the optimization variant of Borda-Shift-Bribery computes the
cost of a cheapest shift bribery that gives p a given number of points (the algorithm
uses standard dynamic programming). Second, if there is a successful shift bribery that
increases the score of p by K points, then every shift bribery that increases p’s score
by 2K points is successful (the best imaginable shift bribery gets K points for p in
such a way that in each swap it increases the score of p and decreases the score of
its strongest competitor; we achieve the same—or better—effect by getting 2K points
for p).

Now the algorithm proceeds as follows: First, we guess the number K of points
that p gets in the optimal solution. Then, we guess a number K ′, K ′ � K . (Because
we are dealing with Borda elections, both guesses boil down to trying polynomially
many computation paths.) We compute a cheapest shift bribery S1 that gives K points
to p. Then, we compute a cheapest shift bribery S2 that gives K ′ additional points to
p (we apply S2 after we have applied S1). We claim that S1 + S2 (that is, the two shift
briberies taken together) form a 2-approximate solution.

Why is this so? Consider some optimal shift bribery O that ensures that p wins.
By assumption, this shift bribery obtains K points for p. Now imagine the following
situation: We start with the original election and perform only those swaps that are
included in both O and S1. In effect, p gains some K ′′ points. If we continued with
the optimal solution, p would obtain additional K − K ′′ points and would become a
winner of the election. By our second observation, this means that if after performing
the swaps that occur both in O and in S1 we obtain additional 2(K − K ′′) points for
p, p certainly wins. We obtain the first of these K − K ′′ points by simply performing
the remaining swaps from S1. For the second K − K ′′ points, we can assume that we
guessed K ′ = K − K ′′. In effect, performing the swaps from S2 ensures p’s victory.
Furthermore, by definition of S1 we know that its cost is no higher than that of O. On
the other hand, the cost of S2 also has to be at most as high as that of O because, by
definition, the cost of S2 cannot be higher than the cost of the shift bribery that contains
exactly the swaps that are in O but not in S1.

So far, there has been relatively little research on how to cope with the hardness of
bribery problems (except for results regarding special cases such as Shift-Bribery, as
seen in the preceding theorem). For example, many parameterized-complexity results
boil down to polynomial-time algorithms for the case where the number of candi-
dates is constant. In this case, bribery problems can either be solved by an appro-
priate brute-force search, or by solving a linear integer program using the algorithm
of Lenstra, Jr. (1983); see the papers of Faliszewski et al. (2009b, 2011b), Elkind
et al. (2009c), Dorn and Schlotter (2012), and Hemaspaandra et al. (2013b) for exam-
ples. These approaches, however, do not work for weighted elections and, indeed, for
weighted elections bribery problems are typically NP-hard (see, e.g., the dichotomy
results of Faliszewski et al. (2009b)). On the other hand, there are several detailed
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166 7 control and bribery in voting

studies of parameterized complexity of Swap-Bribery (due to Dorn and Schlotter,
2012), Support-Bribery (Schlotter et al. (2011); we omit the discussion of Support-
Bribery), and Shift-Bribery (Bredereck et al., 2014b).

Another natural way of coping with the hardness of bribery problems would be to
design approximation algorithms. Brelsford et al. (2008) have made some attempts
in this direction (though, using a rather involved goal function instead of approxi-
mating the cost of a successful bribery), Faliszewski (2008) gave a fully polynomial-
time approximation scheme for plurality-Weighted-$Bribery, and Xia (2012a) gave
several approximation algorithms for destructive bribery problems (where the goal
is to ensure, through buying votes, that some candidate does not win the election).
There are also approximation results regarding Shift-Bribery (due to Elkind and
Faliszewski, 2010; Bredereck et al., 2014b). While surprising at first, this limited
enthusiasm for studying approximation algorithms for bribery problems can, to some
extent, be understood. Theorems 7.11 and 7.12 show how to reduce the Manipulation
and Possible-Winner problems to appropriate $Bribery and Swap-Bribery prob-
lems, and they do so via showing that a given Manipulation (Possible-Winner)
instance is a “yes” instance if and only if there is a zero-cost bribery. This means
that, unless P = NP, those $Bribery and Swap-Bribery problems whose hardness
can be shown via Theorems 7.11 and 7.12 do not have constant-factor polynomial-
time approximation algorithms (for finding the cheapest successful bribery). Nonethe-
less, it is interesting to study the approximability of f -Bribery for various voting
rules f .

It would also be interesting to study the complexity of bribery in elections with
restricted domains, for example, in single-peaked elections. While this direction has
been pursued successfully for the case of control, we are aware of only a single paper
that attempted it for bribery (Brandt et al., 2010a), showing that, indeed, for single-
peaked elections bribery problems often become easy (see also Section 5.4 in the book
chapter by Hemaspaandra et al. (2015)).

7.4.2 Other Bribery Problems

So far, we have focused on the most standard election model, where voter preferences
are represented by total orders over the set of alternatives. Naturally, there are numerous
other settings in which bribery was studied, and in what follows we give several (though
certainly not all) examples of such settings.

Mattei et al. (2012a) have considered bribery in combinatorial domains, where
the voters express their preferences over bundles of alternatives in a certain compact
way. This compact representation can lead to quite interesting results. The particular
language used to express preferences in the work of Mattei et al. (2012a) (CP-nets)
does not allow one to express certain preference orders and, as a result, Bribery for
k-approval becomes easy in this model (see Chapter 9 for more details on voting in
combinatorial domains). If there are no direct interrelations between the bundles of
items, it may be more reasonable to model bribery as the lobbying problem (studied by
Christian et al. (2007) and later on by Bredereck et al. (2014a) and Binkele-Raible et al.
(2014)): We are given a collection of yes/no votes over all items independently, where
an item is accepted with a simple majority of yes votes, and is rejected otherwise. The
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lobby’s goal is to change the outcome to its liking by bribing certain voters without
exceeding its budget.

Examples of bribery problems in other settings include, for example, the work of
Baumeister et al. (2011) on bribery in judgment aggregation (see Chapter 17 and the
book chapter by Baumeister et al. (2015) for more details on judgment aggregation), the
work of Rey and Rothe (2011) and Marple et al. (2014) on bribery in path-disruption
games, and the work of Mattei et al. (2012b) on bribery in tournaments.

7.5 A Positive Look

There are a number of settings where control and bribery (and similar problems) have
positive interpretations (from particular points of view). In the following we very briefly
list a few examples of such settings.

Election control problems deal with affecting their structure in order to change the
winner. Instead of viewing this as someone manipulating the result, we can think of it
as predicting the winners given how the election’s structure may change. For example,
this research direction was pursued by Chevaleyre et al. (2012) and Baumeister et al.
(2012c). Specifically, Chevaleyre et al. (2012) have studied a situation where we have
already elicited voters’ preferences regarding some set of candidates, but afterward
some new candidates appeared, of whom we have no knowledge whatsoever. Naturally,
possibly each new candidate can be better than each old one, so each of them, possibly,
might win the election. However, can we decide which of the original candidates still
have chances of winning? This problem of predicting possible winners is very close in
spirit to control by adding candidates (and to cloning; see later), though—formally—it
is a special case of the Possible-Winner problem (and, as such, it is a special case of
the Swap-Bribery problem).

Another way of predicting election winners was suggested by Wojtas and Fal-
iszewski (2012), who have used counting variants of election control problems. In
particular, they considered the following setting: We know the preference orders of the
voters, but we do not know which of them will eventually cast votes. Having some prior
distribution on the number of voters that do cast votes (and assuming that if k voters
participate in the election, then each size-k subset of voters is equally likely to vote),
what is the probability that a given candidate wins? Formally, this problem reduces to
counting the number of ways of adding (deleting) voters to (from) an election to ensure
a given candidate’s victory.

Quite interestingly, many of the problems that model attacks on elections have
direct applications in protecting them. For example, in the margin-of-victory problem
(see, e.g., the work of Cary (2011), Magrino et al. (2011), Xia (2012a), and Reisch
et al. (2014)) we ask how many voters need to cast different votes to change the
result of an election. If this number is high then it is unlikely that the election was
tampered with. However, if this number is low, it means that it would have been easy to
manipulate the result in some way and thus we should carefully check the election. The
margin-of-victory problem is, in some sense, simply a destructive bribery problem.
Similarly, Birrell and Pass (2011) have used bribery-related problems in the context of
approximate strategyproofness of voting rules. Yet another application of a control-like
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problem to protect elections was given by Elkind et al. (2012a). They have considered
the problem of candidate cloning, where some candidate c is replaced by a number of
clones, c1, . . . , ct , that—from the point of view of the voters—are indistinguishable
(consider, for example, a party submitting several candidates for a given position and
the voters forming their preference orders based on party membership only). If an
election is single-peaked and we clone a candidate, it is likely that this election ceases
to be single-peaked. Motivated by this observation, Elkind et al. (2012a) have given
an algorithm that finds an optimal “decloning” of the candidates, so that the resulting
election is single-peaked (similar results, though in a different context, were later
given by Cornaz et al. (2012, 2013); we also mention that cloning, originally defined
by Tideman (1987) and by Zavist and Tideman (1989), resembles control by adding
candidates; its computational analysis is due to Elkind et al. (2011a)).

Finally, let us mention some positive interpretations of bribery problems. In political
elections, prior to casting the votes, the candidates run their campaigns and wish to
convince the voters to rank them as highly as possible. Naturally, running a campaign
has cost (both in terms of money and in terms of invested time) and it is important for the
candidates to decide which voters they should try to convince. However, deciding how
much effort to spend on each voter (or, group of voters) is just the bribery problem (see
the work of Hazon et al. (2013) for a different twist on this idea). With the campaign
management interpretation in mind, it is natural to study various special cases of the
bribery problems. Indeed, Shift-Bribery of Elkind et al. (2009c), where we can only
convince the voters to rank the preferred candidate higher and we cannot affect the
relative order of the other candidates, models campaign management in a natural way.
While the Shift-Bribery problem is NP-hard for many voting rules, Elkind et al.
(2009c) have given a 2-approximation algorithm for this problem with Borda’s rule
(see Theorem 7.13 here), Elkind and Faliszewski (2010) have extended this result to all
scoring rules (and provided weaker approximations for Copeland and maximin), and
Schlotter et al. (2011) have shown that Shift-Bribery is in P for Bucklin and fallback
voting. These results for Bucklin and fallback voting were recently complemented
by Faliszewski et al. (2015) who studied various bribery problems for these rules,
including so-called Extension-Bribery, introduced by Baumeister et al. (2012a) in
the context of campaign management in the presence of truncated ballots.

7.6 Summary

We surveyed the known results on control and bribery. While often studied in the
context of attacking elections, these problems also have many other applications and
interpretations, often very positive ones. Many NP-hardness results have been obtained,
yet recent work focuses on solving these problems effectively, either by approximation
or fixed-parameter tractable algorithms, or efficient heuristics. We strongly encourage
the readers to study control and bribery and to add their own contributions to the field.
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