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Abstract. In a committee election, a set of candidates has to be deter-
mined as winner of the election. Baumeister and Dennisen [2] proposed to
extend the minisum and minimax approach, initially defined for approval
votes, to other forms of votes. They define minisum and minimax com-
mittee election rules for trichotomous votes, incomplete linear orders and
complete linear orders, by choosing a winning committee that minimizes
the dissatisfaction of the voters. Minisum election rules minimize the
voter dissatisfaction by choosing a winning committee with minimum
sum of the disagreement values for all individual votes, whereas in a
minimax winning committee the maximum disagreement value for an
individual vote is minimized. In this paper, we investigate the computa-
tional complexity of winner determination in these voting rules. We show
that winner determination is possible in polynomial time for all minisum
rules we consider, whereas it is NP-complete for three of the minimax
rules. Furthermore, we study different forms of manipulation for these
committee election rules.

Keywords: Computational social choice · Committee elections · Win-
ner determination · Manipulation · Complexity

1 Introduction

There are diverse situations where the preferences of different people have to be
aggregated, in order to decide upon a given set of alternatives. In such a situation
a voting rule is used. Such voting rules may also be employed in systems of
artificial intelligence, where different agents have to make a joint decision on some
set of alternatives. The study of voting rules from an axiomatic and algorithmic
point of view is actively pursued in the field of computational social choice
(see e.g., the bookchapters by Zwicker [36], Caragiannis et al. [11], Conitzer
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and Walsh [15], Faliszewski and Rothe [16], Lang and Xia [22], Boutilier and
Rosenschein [6]). Most of this work studies the case where the winner of the
election is a single candidate, but voting is also used to elect a set of candidates,
like in the election of a council or a committee. Consider for example the situation
where three friends give a joint party and want to decide what there will be on
the buffet. They know that there is only place for a certain number of things on
the table, and the three friends will probably have different preferences over the
possible choices. In this case a committee election rule may be used. Another
application is the design of recommender systems (see [25]), where the task is
to choose a number of products for recommendation to a buyer on an online
platform.

A widely used rule for committee elections is the minisum approach. Here, the
voters decide for each candidate whether they approve or disapprove of her, and
the winning committee has a minimum sum of distances to the individual votes,
where the distance is measured by the Hamming distance. This corresponds to
a utilitarian approach. Another variant of minimizing the voters’ dissatisfaction
is the minimax approach suggested by Brams et al. [7–9,21]. Here, the maxi-
mum distance to an individual vote is minimized using the Hamming distance.
Baumeister and Dennisen [2] proposed minisum and minimax committee elec-
tion rules for trichotomous votes, incomplete linear orders, and complete linear
orders. We will study winner determination and manipulation for these newly
defined committee election rules.

Closely related to committee elections that minimize the voters’ dissatisfac-
tion are systems of proportional representation (see the work of Chamberlin and
Courant [13] and Monroe [27]). In these systems the dissatisfaction of a voter
is not computed for the whole committee, but only for that candidate from the
committee that represents this voter. Computational aspects for problems of
proportional representation have been studied in [4,32,34].

2 Definitions and Notations

In this section we introduce the definitions and notations for the voting rules that
we analyze in the following sections. A committee election is a triple (C, V, k),
where C = {c1, . . . , cm} is the set of candidates, V = (v1, . . . , vn) is a list of
voters represented by their votes, and k is the size of the committee. We will
consider four different types of votes. An approval vote is a {0, 1}m vector, for
a fixed order of the candidates. A 1 in the vector stands for an approval of the
corresponding candidate, whereas a 0 stands for a disapproval. The second type
of votes are trichotomous votes (see Felsenthal [17]). Here, the votes can equally
express an approval or disapproval for each candidate, but the voters can also
decide to abstain for a candidate. This is realized through {−1, 0, 1}m vectors
for a fixed order of the candidates, where again a 1 stands for approval, but
now a −1 stands for disapproval, and a 0 stands for an abstention. The last two
types of votes we consider are complete and incomplete linear orders. A complete
linear order is a total, transitive, and asymmetric binary relation over the set of
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candidates. We will denote the vote of voter v by >v, where c >v d means that
candidate c is preferred to candidate d by voter v, and c �>v d means that voter
v does not prefer candidate c to candidate d. Incomplete linear orders are also
transitive and asymmetric, but not necessarily a total binary relation over the
set of candidates. Note that this allows for general incomplete linear orders and
not only linear orders with indifferences. To distinguish between complete and
incomplete linear orders, we will denote an incomplete linear order for voter v
by �v. We will write a ∼v b, if the relation between two candidates a and b is
unknown in v, i.e., neither a �v b nor b �v a holds.

To define minisum and minimax voting rules, we need a measure of distance
for a single vote with a potential committee. For the sake of readability, we
will denote an approval committee as a {0, 1}m vector having exactly k ones,
or as a set K ⊆ C of candidates. In case of trichotomous votes, we will also
denote a committee as a {−1, 1}m vector having exactly k ones. And we will
say that weight(v) denotes the number of ones in a vector v from {0, 1}m or
{−1, 0, 1}m. For approval votes we adopt the obvious approach of using the
Hamming distance, as proposed by Brams, Kilgour and Sanver [7]. The distance
between a vote v ∈ {0, 1}m and a committee w ∈ {0, 1}m is defined through
HD(w, v) =

∑
1≤i≤m |w(i) − v(i)|.

In the case of trichotomous votes, we slightly adapt the Hamming distance,
such that a complete disagreement between vote and committee adds two points,
and an abstention in the vote and an approval or disapproval in the committee
adds only one point. The distance between a vote v ∈ {−1, 0, 1}m and a com-
mittee w ∈ {−1, 1}m is defined through δ(w, v) =

∑
1≤i≤m |v(i) − w(i)|. This

distance can be similarly defined for two vectors v, w ∈ {−1, 0, 1}m.
For complete linear orders, Baumeister and Dennisen [2] use the sum of the

ranks of the committee members in a vote to measure the dissatisfaction. This
goes back to the Wilcoxon rank-sum test [35]. The normalized ranksum between
a vote v and a committee K ⊆ C is RS(K, v) =

∑
c∈K pos(c, v)−k(k+1)/2, where

pos(c, v) denotes the position of candidate c in vote v.
The last type of votes are incomplete linear orders, for which we will use the

modified Kemeny distance, as suggested by Baumeister and Dennisen [2]. The
distance between a vote v and a committee K ⊆ C, is defined as Dist(K, v) =∑

a,b∈C dK,v(a, b), where the distance between two candidates a and b regarding
a committee K and a vote v is defined through

dK,v(a, b) =

⎧
⎪⎨

⎪⎩

1 if (a ∈ K, b �∈ K ∧ a ∼v b) or (a �∈ K, b ∈ K ∧ a ∼v b),
2 if (a ∈ K, b �∈ K ∧ b �v a) or (a �∈ K, b ∈ K ∧ a �v b),
0 otherwise.

Note that for an increase of dissatisfaction in the definition of dK,v(a, b) it
is important to require that one of the candidates a or b is not in the com-
mittee. Otherwise the dissatisfaction would already increase if for two candi-
dates from the committee (or outside the committee) the vote specifies an order
over them, which may result in different winning committees. Transferring the
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minisum and minimax approach, that will be defined formally in Sect. 3, to tri-
chotomous votes leads to minisum-CAV and minimax-CAV, for complete linear
orders to minisum-ranksum and minimax-ranksum, and to minisum-Kemeny
and minimax-Kemeny for incomplete linear orders. In the following sections we
will study winner determination and manipulation for these voting rules from
a computational point of view. We assume that the reader is familiar with the
basic concepts of computational complexity, such as many-one reducibility and
the complexity classes P and NP; details and definitions can be found in the text-
book by Papadimitriou [30]. Intuitively, the tractable problems are those, which
can be solved in polynomial time, whereas problems which are NP-complete can
be seen as intractable. Table 1 summarizes the above introduced voting rules
and the results concerning winner determination that will be obtained in the
following section.

Table 1. Winner determination in minisum and minimax voting rules for different
forms of votes.

Votes Voting rule Measure Minisum Minimax

winner winner

Approval votes Minisum/minimax-
approval

Hamming distance
(HD)

In P see [8] NP-hard
see [23]

Trichotomous
votes

Minisum/minimax-
CAV

Mod. Hamming
distance (δ)

In P trivial NP-hard see
Theorem 4

Complete linear
orders

Minisum/minimax-
ranksum

Ranksum (RS) In P see
Theorem 2

Incomplete
linear orders

Minisum/minimax-
Kemeny

Mod. Kemeny
distance (Dist)

In P see
Theorem 3

NP-hard see
Theorem 7

3 Winner Determination

In a single winner election, the winner is a single winning candidate, whereas
in a committee election, the winner is one committee (or several committees)
consisting of a fixed number of candidates. Let Fk(C) denote all committees of
size k from the set C, where the representation (i.e., approval vote, trichotomous
vote, or a set of candidates) will be clear from the context. The number of pos-
sible winning committees |Fk(C)| is exponential in the number of participating
candidates. Since committee elections may have a huge number of voters and/or
candidates, it is desirable that the winning committees may still be determined
in a reasonable amount of time. In the following we will present the minisum
and minimax approach that can be combined with the above defined measures
of disagreement to define committee election rules. These rules will not always
return a single winning committee, hence some tie-breaking rule has to be used
in order to obtain a single winning committee.
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In a minisum rule, the sum of the disagreement values for all individual votes
regarding the winning committee is to be minimized. Formally, the set of win-
ning committees in the minisum rule is arg minK∈Fk(C)

∑
v∈V �(K, v), where

� ∈ {HD, δ,RS,Dist} for approval votes, trichotomous votes, complete linear
orders, or incomplete linear orders. In contrast in a minimax rule, the maximum
disagreement value for an individual vote is to be minimized. Hence, the set
of winning committees in the minimax rule is arg minK∈Fk(C) maxv∈V �(K, v),
where � ∈ {HD, δ,RS,Dist} for approval votes, trichotomous votes, complete
linear orders, or incomplete linear orders. We will make use of the following
theorem from Baumeister and Dennisen [2], which shows that for the case of
complete linear orders, the winning committees in a minisum/minimax-Kemeny
election and in a minisum/minimax-ranksum election are always equal.

Theorem 1 (Baumeister and Dennisen [2]). The set of winning committees
in a minisum/minimax-Kemeny election with complete linear orders and in the
corresponding minisum/minimax-ranksum election are always equal, i.e.,

arg min
K∈Fk(C)

∑

v∈V

Dist(K, v) = arg min
K∈Fk(C)

∑

v∈V

RS(K, v), and

arg min
K∈Fk(C)

max
v∈V

Dist(K, v) = arg min
K∈Fk(C)

max
v∈V

RS(K, v).

We want to study the complexity of determining a winning committee indepen-
dently of any tie-breaking rule. Since the number of winners may be exponential,
determining all winning committees is obviously not possible in polynomial time,
hence we focus on the question whether it is possible to obtain one winning com-
mittee. We will see that in the case of minisum elections, this is always possible in
polynomial time. For the minimax elections, we show NP-hardness of the corre-
sponding decision problem for trichotomous votes and incomplete linear orders,
and present an approximation algorithm for the case of trichotomous votes.

3.1 Minisum Elections

In minisum-approval the total dissatisfaction is minimum if the committee con-
tains k candidates having the highest number of approvals in all votes. Hence,
as shown by Brams, Kilgour, and Sanver [8], it is possible to determine a win-
ner in polynomial time. Similar to minisum-approval in minisum-CAV, the total
dissatisfaction is minimum if the committee consists of k candidates that have
the highest combined approval scores, i.e., the sum of the corresponding values
from the votes. Again a winner can obviously be determined in polynomial time.

Theorem 2. A minisum-ranksum winner can be determined in polynomial
time.

This holds, since a minisum-ranksum winner consists of k candidates with
the highest Borda score1. The detailed proof is omitted due to space.
1 In an m-candidate Borda election (see [5]) each candidate gets points according to

her position in the votes, where a first position gives m − 1 points, a second m − 2,
and so on.
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The corresponding single-winner problem for Kemeny elections, i.e., whether
there exists a linear order for which the sum of the distances to the votes does
not exceed a given bound, was shown to be NP-hard by Bartholdi et al. [20]. In
contrast, we show that a winning committee for minisum-Kemeny can be deter-
mined in polynomial time, by reducing the determination of a winner committee
for an election with incomplete linear orders to an election in which all votes are
complete linear orders.

Lemma 1. For each minisum-Kemeny election (C, V, k) with incomplete lin-
ear orders, there is a minisum-Kemeny election (C, V ′, k) with complete linear
orders, so that

∑
v∈V ′ Dist(K, v) = 2

∑
v∈V Dist(K, v) holds for all committees

K ∈ Fk(C) and V ′ can be constructed in polynomial time.

Proof. Given a committee election (C, V, k), we will construct a set of voters
V ′ with the following properties: For each vote v ∈ V there will be two votes v′

1

and v′
2 in V ′, such that ∀c, d ∈ C

1. if c �v d, then c >v′
1

d and c >v′
2

d,
2. if c ∼v d, either c >v′

1
d and d >v′

2
c, or c >v′

2
d and d >v′

1
c holds.

In general, for a committee K and a voter list U , we have:
∑

v∈U Dist(K, v) =∑
c∈K

∑
d/∈K (|{v ∈ U |c ∼v d}| + 2 · |{v ∈ U |d �v c}|). With the above defined

properties, it holds |{v ∈ V ′|d > c in v}| = |{v ∈ V |c ∼v d}|+2·|{v ∈ V |d �v c}|
for all c, d ∈ C, and thus
∑

v∈V ′
Dist(K, v) =

∑

c∈K

∑

d/∈K

(|{v ∈ V ′|c ∼v d}| + 2 · |{v ∈ V ′|d >v c}|)

= 2 ·
∑

c∈K

∑

d/∈K

(|{v ∈ V |c ∼v d}| + 2 · |{v ∈ V |d �v c}|) = 2 ·
∑

v∈V

Dist(K, v).

We now describe how V ′ can be constructed: For each vote w ∈ V create two
directed graphs G1 = (V1, E1) and G2 = (V2, E2).

1. G1 and G2 are constructed as follows: There is a node for each candidate
c ∈ C, and an edge (c, d) if c �w d holds.

2. Find two nodes u, v ∈ V1, so that neither (u, v) ∈ E1 nor (v, u) ∈ E1 holds.
Add (u, v) to E1. If there is no such pair, go to step 7.

3. Build the transitive closure of G1.
4. Add for each edge (u, v) which was added in steps 2 and 3 to E1, the edge

(v, u) to E2.
5. Build the transitive closure of G2.
6. If in step 5 new edges were added to E2, add for each edge (u, v) which was

added to E2, the edge (v, u) to E1 and go to step 3. Otherwise, go to step 2.
7. Determine the complete orders on basis of the indegree of the nodes of G1

and G2 and halt. If a node in Gi has indegree j, the corresponding candidate
is at position (j + 1) in v′

i.
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According to the definition of incomplete linear orders, the original graph in
step 1 is acyclic and transitively closed. If we add an edge (u, v) to E1 in step
2, this cannot create a cycle since there was no path from v to u: If there had
been a path from v to u, the edge (v, u) would have been in E1 because of the
transitive closure. This holds analogously for adding an edge (v, u) to E2 in step
4. If we compute the transitive closure, no cycle can be created if the original
graph was acyclic.

If we “mirror” an edge (u, v) from G1 to G2, it holds that neither edge (u, v)
nor (v, u) existed in G2 before. Analogously, it holds that neither edge (u, v) nor
edge (v, u) existed in G1 if we “mirror” an edge (u, v) from G2 to G1.

A directed graph G = (V ′, E′), which contains for each node pair u, v ∈ V ′

either edge (u, v) or edge (v, u), contains exactly ((|V ′| − 1) · |V ′|) · 1
2 edges. The

algorithm runs until both graphs contain ((|V1|−1) · |V1|) · 12 = ((|V2|−1) · |V2|) · 12
edges. Step 2 guarantees that this edge number is attained in G1. As for each
edge (u, v) which is added to G1 in step 2, edge (v, u) is added in step 4 to G2,
this edge number is attained in G2, too. So, the algorithm terminates, and the
properties stated at the beginning of this proof hold.

The initialization of the graphs and the translation of the resulting graphs
into two complete linear orders v′

1, v′
2 for a vote v ∈ V is possible in polynomial

time. The transitive closure of a graph G can be computed in O(|V ′|3). For a
vote v, the transitive closure has be to computed maximally as often as edges are
added to G1 or G2. The number of edges is smaller than |V1|2, i.e., the runtime
for the computation of transitive closures for a vote v is in O(|V1|3 · |V1|2) =
O(m5). So, V ′ can be constructed in time O(m5 · n). This completes the proof.


�
Now, we are ready to state our result for winner determination in minisum-

Kemeny elections. The proof follows directly from Lemma 1, Theorems 2 and 1.

Theorem 3. A minisum-Kemeny winning committee can be determined in poly-
nomial time.

3.2 Minimax Elections

In contrast to the minisum elections, in minimax-approval, minimax-CAV, and
minimax Kemeny elections, it is not always possible to determine a winning
committee in polynomial time, unless P = NP. This holds, since we show NP-
hardness of the following decision problem.

�-Minimax-Score

Given: A committee election (C, V, k) and a positive integer d.

Question: Is there a committee K ∈ Fk(C) with maxv∈V �(K, v) ≤ d?

where � ∈ {HD, δ,RS,Dist} for approval votes, trichotomous votes, complete
or incomplete linear orders. Since there is a natural upper bound for �(K, v)
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for every � ∈ {HD, δ,RS,Dist}, it is possible to compute a winning com-
mittee in polynomial time, if this decision problem is solvable in polynomial
time. LeGrand [23] showed that HD-Minimax-Score is NP-complete. How-
ever, LeGrand et al. [24] showed that the search variant of this problem, where
we actually seek a winning committee, can be approximated with a factor of
3, and Caragiannis et al. [12] proposed an LP-based algorithm for this problem
where the distance to the optimal solution is at most 2. Recently, Byrka and
Sornat [10] provided a PTAS for minimax approval voting.

The above defined score problem for trichotomous votes is also NP-complete.

Theorem 4. δ-Minimax-Score is NP-complete.

Proof. Membership in NP is obvious, and to see that δ-Minimax-Score is NP-
hard, it suffices to transform every approval vote v into a trichotomous vote v′ by
replacing every 0 in v by a −1 in v′. To obtain a committee K ′ for trichotomous
votes, we need to replace every 0 by a −1 in the resulting approval committee
K. Then we have HD(K, v) ≤ d ⇔ δ(K ′, v′) ≤ 2d. 
�

Similarly to the approximation algorithm for the search variant of HD-
minimax-score by LeGrand et al. [24], one can give an approximation algorithm
with a factor 3 for the search variant of δ-minimax-score.

The search variant of will be denoted by Minimax-CAV, where the input is
also a committee election (C, V, k) with votes represented as {−1, 0, 1}m vectors,
and the aim is to find a committee K∗ ∈ arg minK∈Fk(C) maxu∈V δ(K,u).

Theorem 5. There is an approximation algorithm which finds a solution K ′

in polynomial time, so that for each optimal solution K of the search problem
Minimax-CAV it holds δ(K ′, u) ≤ 3 · Maxδ(V,K) for all votes u ∈ V , where
Maxδ(V,K) = maxu∈V δ(K,u) denotes the maximum distance between K and
the votes in V .

Proof. Denote for a vector v ∈ {−1, 0, 1}m by z(v) the number of zeros in v,
and by n(v) the number of −1 in v. A k-completion of v is a vector v′ in {−1, 1}m
constructed as follows.

1. If weight(v) ≤ k and z(v) + weight(v) < k, transform all zeros into ones and
transform −1 into ones until weight(v′) = k.

2. If weight(v) ≤ k and z(v) + weight(v) ≥ k, transform zeros into ones until
weight(v′) = k, and transform the remaining zeros into −1.

3. If weight(v) > k, transform ones into −1 until weight(v′) = k, and transform
all zeros into −1.

Obviously, each k-completion v′ for v contains exactly k ones. We will first
show, that for an optimal solution K, an initial vector v and a k-completion K ′

of v, it holds δ(K ′, v) ≤ δ(K, v). Fix an optimal solution K, an initial vector v
and a k-completion K ′ of v. Consider the possibilities for the i-th position in the
vectors, where we can have a −1, a 0, or a 1. For the first case (weight(v) ≤ k
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Table 2. Possibilities for the first case

v 1 1 0 0 - 1 - 1 -1 -1

K′ 1 1 1 1 1 1 -1 -1

K 1 - 1 1 -1 1 -1 1 -1

k1 k2 k3 k4 k5 k6 k7 k8

and z(v) + weight(v) < k), we have the following 8 possibilities. For 1 ≤ i ≤ 8,
ki denotes the number of occurrences of the corresponding possibility (Table 2).

We have weight(K ′) = k1 + k2 + k3 + k4 + k5 + k6 = k, and weight(K) =
k1 + k3 + k5 + k7 = k. Hence k2 + k4 + k6 = k7, and we have δ(K, v) = 2k2 +
k3 + k4 + 2k5 + 2k7, and δ(K ′, v) = k3 + k4 + 2k5 + 2k6. Now it is easy to verify,
that δ(K, v) ≥ δ(K ′, v). The other two cases can be handled analogously.

The approximation algorithm Approx-Minimax-CAV proceeds as follows:

1. Select a vote v ∈ V arbitrarily.
2. Compute a k-completion v′ of v.
3. Return K ′ = v′ as solution.

Obviously, this algorithm runs in polynomial time. To estimate the approx-
imation rate of the algorithm, consider the vote v ∈ V which was chosen, the
k-completion K ′ of v which is returned as solution, and an optimal solution K
for Minimax-CAV, i.e., a vector K in {−1, 1}m containing exactly k ones so
that Maxδ(V,K) is minimum for all vectors in {−1, 1}m with weight k.

We need to show that δ(K ′, u) ≤ 3 · Maxδ(V,K) holds for all u ∈ V . Since
the triangle inequality applies to δ, we have for all u ∈ V : δ(K ′, u) ≤ δ(K ′, v) +
δ(v, u). Repeated application of the triangle inequality leads to:

δ(K ′, u) ≤ δ(K ′, v) + δ(K, v) + δ(K,u). (1)

Since K is an optimal solution, we have δ(K,u) ≤ Maxδ(V,K) for all u ∈ V .
Similarly, we have δ(K, v) ≤ Maxδ(V,K). Since K ′ is a k-completion of v,
it also holds that δ(K ′, v) ≤ δ(K, v). The three terms on the right hand of
inequality (1) are ≤ Maxδ(V,K), and we get the desired property: δ(K ′, u) ≤
3 · Maxδ(V,K) for all u ∈ V. 
�

We now turn to the study of the Dist-Minimax-Score for incomplete lin-
ear votes. To show that this problem is also NP-hard, we first need to show
NP-hardness of Restricted-HD-Minimax-Score, which corresponds to HD-
Minimax-Score for the case where the number m of candidates is even and the
size of the committee is exactly m/2.

Theorem 6. Restricted-HD-Minimax-Score is NP-complete.

Proof. The NP-hardness of Restricted-HD-Minimax-Score can be shown
via a reduction from HD-Minimax-Score. Consider a HD-Minimax-
Score instance (C, V, k, d), and construct a Restricted-HD-Minimax-Score
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instance (C ′, V ′, k′, d). The set of candidates is C ′ = C ∪ D with the set of
dummy candidates D = {d1, ..., dm}, and the list V ′ = {v′

1, ..., v
′
n} of votes is

constructed as follows: v′
i has the form (vi, w) where w is a vector that has a 1 at

the first m − k positions, and a 0 on the remaining k positions. Denote the set of
the m−k candidates from D who receive a 1 in all votes by W . Let the size of the
committee be k′ = m. Now, we show that (C, V, k, d) ∈ HD-Minimax-Score ⇔
(C ′, V ′, k′, d) ∈ Restricted-HD-Minimax-Score.

(⇒) Assume that (C, V, k, d) is a yes-instance for HD-Minimax-Score, i.e.,
there is a committee K ∈ Fk(C) so that the Hamming distance to all votes in
V is at most d. Then, there also exists a committee K ′ ∈ Fk′(C ′) = Fm(C ′) so
that the Hamming distance to all votes in V ′ is at most d, namely the committee
K ∪ W , since for all i ∈ {1, ..., n}, it holds that HD(K ′, v′

i) = HD(K ∪ W, v′
i) =

HD(K, vi) + HD(W,w) = HD(K, vi) ≤ d.
(⇐) Assume that (C ′, V ′, k′, d) is a yes-instance for Restricted-HD-Mini-

max-Score. Then, there is a committee K∗ ∈ Fk′(C ′) = Fm(C ′), so that the
Hamming distance to all votes in V ′ is at most d. We will now consider all
possible choices of K∗ and show that there is always a winning committee with
exactly k candidates from C and m − k candidates from D.

Case 1: K∗ = K ∪ W for a committee K ∈ Fk(C). If K∗ has the form
K ∪ W for a committee K ∈ Fk(C), we have with K = K∗ − D a committee
in Fk(C) so that the Hamming distance to all votes in V is at most d: for all
i ∈ {1, ..., n}, it holds that HD(K, vi) = HD(K∗, v′

i) ≤ d.
Case 2: K∗ �= K ∪ W for a committee K ∈ Fk(C). If K∗ does not have

the form K ∪ W for a committee K ∈ Fk(C), we can transform K∗ into a
committee K ′ = K ∪ W so that K ∈ Fk(C), as follows. If a candidate in W is
not elected, “shift” in the vector representation of the committee, if possible, a
1 from a candidate in D − W to this candidate in W . This action reduces the
Hamming distance of the committee regarding all votes. Since in all votes the
candidates in W are accepted and the candidates in D − W are rejected, the
Hamming distance regarding D decreases by 2 via such a shift. Suppose that
q such shifts are required and let K+ denote the resulting committee. Then it
holds that HD(K+, v′

i) = HD(K∗, v′
i) − 2q ≤ HD(K∗, v′

i).
Case 2.1: In K+ more than m−k candidates from D are elected. If in

K+ more than m−k candidates from D are elected, “shift” the surplus ones from
candidates in D − W to the candidates in C. Overall, exactly m candidates are
elected, i.e., if exactly m−k candidates from D are elected, exactly k candidates
from C are elected. The resulting committee K ′ is a committee of the form
K ∪ W with K ∈ Fk(C). If we shift a 1 from D − W to C, the Hamming
distance regarding the candidates in D decreases by value 1 since in all votes
the candidates in D − W are rejected. The Hamming distance regarding the
candidates in C increases at most by 1 in a shift. So, the Hamming distance
either decreases or stays the same.

Case 2.2: In K+ less than m − k candidates from D are elected.
We can analogously “shift” the missing ones from C to the candidates in W .
With K = K ′ − D, we have a committee from Fk(C), where the Hamming
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distance regarding all votes in V is at most d. So, we have for all i ∈ {1, ..., n}
HD(K, vi) = HD(K ′ − D, vi) = HD(K ′, vi) ≤ HD(K+, v′

i) ≤ HD(K∗, v′
i) ≤ d.


�
With the NP-hardness of Restricted-HD-Minimax-Score, we can now

show NP-hardness of Dist-Minimax-Score for incomplete linear orders.

Theorem 7. Dist-Minimax-Score is NP-complete.

Proof. The NP-hardness of Dist-Minimax-Score can be shown via a reduc-
tion from Restricted-HD-Minimax-Score. Consider a Restricted-HD-
Minimax-Score instance (C, V, k, d) and construct a Dist-Minimax-Score
instance (C, V ′, k, d′), The set of votes V ′ = {v′

1, ..., v
′
n} is constructed as fol-

lows: Let Wi denote the set of candidates who received a 1 in vi, and Li the
set of candidates who received a 0 in vi. The candidates from Wi and Li are
ordered in v′

i so that w �v′
i

l holds for all w ∈ Wi and all l ∈ Li. The bound
on the distance is d′ = d · k. We now show that due to the property k = m

2 ,
Dist(v′

i,K) = HD(K, vi) ·k holds for the given construction for all i ∈ {1, ..., n}
and for all committees K ∈ Fk(C). For a vote v′

i ∈ V ′ and a committee K define
the following sets of candidates:

– KW
i = K ∩ Wi,

– KL
i = K ∩ Li,

– K̄W
i = (C \ K) ∩ Wi, and

– K̄L
i = (C \ K) ∩ Li.

The computation of the modified Kemeny distance can then be carried out
based on the quantities |KW

i |, |KL
i |, |K̄W

i |, and |K̄L
i |. It suffices to compare all

candidates in the committee with the candidates outside of the committee, i.e.,
we only need to consider the candidate pairs (a, b) with a ∈ K and b ∈ (C \ K).
We have:

– For each pair of candidates (a, b) ∈ KW
i × K̄W

i , the relation between a and
b is unknown in vi, since both of them are contained in Wi. So, we have a
distance of 1.

– For each pair of candidates (a, b) ∈ KW
i × K̄L

i , it holds also a �vi
b, since a is

contained in Wi and b in Li. So, we have a distance of 0.
– For each pair of candidates (a, b) ∈ KL

i × K̄W
i , it holds b �vi

a since a is
contained in Li and b in Wi. So, we have a distance of 2.

– For each pair of candidates (a, b) ∈ KL
i × K̄L

i , the relation between a and b is
unknown in vi, since both of them are contained in Li. So, we have a distance
of 1.

Thus, we have:

Dist(v′
i,K) = |KW

i | · |K̄W
i | + 2 · |KL

i | · |K̄W
i | + |KL

i | · |K̄L
i | (2)

If we determine the Hamming distance between a committee K and a vote vi,
we count the positions where a candidate who is elected in the committee is not
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accepted in vi and the positions where a candidate not elected in the committee
is accepted in vi, i.e., we have:

HD(K, vi) = |KL
i | + |K̄W

i | (3)

For all i ∈ {1, ..., n} and for all committees K ∈ Fk(C), we have:

Dist(v′
i,K)

(2)
= |KW

i | · |K̄W
i | + 2 · |KL

i | · |K̄W
i | + |KL

i | · |K̄L
i |

= |K̄W
i | · (|KW

i | + |KL
i |) + |KL

i | · (|K̄W
i | + |K̄L

i |)
= |K̄W

i | · k + |KL
i | · (m − k) = (|K̄W

i | + |KL
i |) · k + |KL

i | · (m − 2k)
(3)
= HD(K, vi) · k + |KL

i | · (m − 2k).

With k = m
2 it holds for all i ∈ {1, ..., n} and for all committees K ∈ Fk(C)

Dist(v′
i,K) = HD(K, vi) · k + |KL

i | · 0 = HD(K, vi) · k. Hence, we have that
there is a committee for which the Hamming distance to all votes in V is at most
d, if and only if there is a committee for which the modified Kemeny distance
to all votes in V ′ is at most dk. This completes the proof. 
�

The complexity of the corresponding problem for complete linear orders,
RS-Minimax-Score, remains open.

4 Manipulation

The famous Gibbard and Satterthwaite Theorem [18,33] says that, in principle,
every preference-based voting rule is manipulable. Bartholdi et al. [1] introduced
a decision problem that captures manipulation in elections. They ask whether for
a given election and some distinguished candidate, there is a vote of the manip-
ulator that makes this candidate win. Based on manipulation for single winner
elections, Meir et al. [26] propose manipulation problems for committee elections.
Their definition includes a utility function and its most general form is as follows.

E-Utility-Committee-Manipulation

Given: A committee election (C, V, k) with honest voters, a utility function
u : C → Z, and an integer t.

Question: Does there exist a vote s over C, such that in the resulting election
with additional vote s under voting rule E it holds that

∑
c∈K u(c) ≥ t,

where K is the winning committee with |K| = k?

They consider an adversarial tie-breaking (see [14]), where from several
equally performing candidates those with the lower utility for the manipula-
tor win the election. Procaccia et al. [31] state that Utility-Committee-
Manipulation is in P for committee elections under Approval voting. The
proof is given by Meir et al. [26], who also show that if the utility function is
mapping to {0, 1} rather than Z, Utility-Committee-Manipulation is in P
for all committee elections held under scoring rules. Since in a minisum-ranksum
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election the winning committee contains the k candidates with the highest Borda
scores (see the remark after Theorem 2), the fact that Utility-Committee-
Manipulation for minisum-ranksum is in P follows immediately.

Obraztsova et al. [29] follow the approach of Meir et al. [26] by defining
manipulation in committee elections through a utility function of the manipula-
tor. They study the complexity of manipulation in committee elections, with a
particular focus on the role of tie-breaking. They focus on the case where ties are
broken according to a fixed predefined order or by a natural randomized rule.

We will also follow the approach of Meir et al. [26], but here we consider non-
unique winners and therefore have to change the definition by asking whether
the condition holds for at least one winning committee. Furthermore, we will
focus only on the case where the utility function is boolean-valued, and state
two special variants of it, that we find most natural. In the first variant, we
simply ask whether it is possible for the manipulator to vote such that a given
subset of the candidates is in at least one winning committee. In analogy to
the manipulation problems in single winner elections, we call this problem E-
Committee-Manipulation.

E-Committee-Manipulation (CM)

Given: A committee election (C, V, k) with honest voters and a distinguished
set of candidates L ⊆ C with |L| ≤ k.

Question: Does there exist a vote s over C, such thats L ⊆ K holds for a win-
ning committee K ∈ Fk(C) in the resulting committee election with
additional vote s held under the rule E?

While CM asks whether all candidates in L can become part of the winning
committee, one can also ask whether it is possible to make at least t candidates
in L part of a winning committee.

E-Threshold-Committee-Manipulation (TCM)

Given: A committee election (C, V, k) with honest voters, a distinguished set
of candidates L ⊆ C with |L| ≤ m, and a non-negative integer t ≤ k.

Question: Does there exist a vote s over C, such that at least t candidates in L
belong to a winning committee K ∈ Fk(C) in the resulting committee
election with additional vote s held under the rule E?

Note that in the case of a committee election rule that always returns a
single winner, CM is a special case of Utility-Committee-Manipulation
with t = |L| and in which the utility function maps all candidates in L to the
value 1 and all candidates in C \ L to 0. Furthermore, CM is the special case of
TCM with t = |L| ≤ k

Even though we consider a different model regarding tie-breaking, the above
mentioned results by Meir et al. [26] can be adapted to CM and TCM.

Theorem 8. CM and TCM for minisum-approval are in P.

Following Meir et al. [26] it holds that if the manipulators’ strategy to approve
all candidates in L and to disapprove all candidates in C \ L does not succeed,
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no other does. Thus, both CM and TCM for minisum-approval can be decided
in polynomial time. A similar result holds for minisum-CAV.

Theorem 9. CM and TCM for minisum-CAV are in P.

Similar to minisum-approval we have that if the strategy to give all candidates
in L a 1 and all candidates in C \L a −1 does not succeed, no other one does. In
the case of complete linear orders, we show, that both manipulation problems
can also be solved efficiently.

Theorem 10. CM and TCM for minisum-ranksum are in P.

Proof. As CM is the special case of TCM where t equals the number of candi-
dates in L, it suffices to give the proof for TCM. Similar to the proofs by Meir
et al. [26] and Bartholdi et al. [20] (see also Obraztsova et al. [28]) we show
how to decide in polynomial time whether it is possible that at least t members
in L belong to a winning committee. We denote the number of candidates in L
by l. We define four lists in which the candidates are given in ascending order
regarding their Borda scores. List T = (t1, . . . , tt) contains the t candidates in
L with the highest Borda scores, list F = (f1, . . . , fl−t) all other candidates in
L, list G = (g1, . . . , gmin(k−t,m−l)) the min(k − t,m − l) candidates in C \ L

with the highest Borda scores and Ĉ = (ĉ1, . . . , ĉm−l−min(k−t,m−l)) the remain-
ing candidates. The manipulator’s vote is given by t1 > · · · > tt > f1 > · · · >
fl−t > g1 > · · · > gmin(k−t,m−l) > ĉ1 > ĉm−l−min(k−t,m−l). If at least t members
in L are part of a winning committee in the election (C, (v1, . . . , vn, s), k) the
manipulation was successful, otherwise it is not possible. 
�

The next theorem shows that for the case of incomplete linear orders, CM
and TCM are solvable in polynomial time as well.

Theorem 11. CM and TCM for minisum-Kemeny are in P.

Proof. It again suffices to give the proof for TCM. Given a committee election
(C, V, k) with V = (v1, . . . , vn), we construct a set of voters V ′ = (v′

1, . . . , v
′
2n)

according to Lemma 1.
We introduce a problem 2-TCM which equals TCM with the exception

that we ask for the existence of a single vote s over C, such that at least t
candidates in L belong to a winning committee K in the committee election
(C, (v′

1, . . . , v
′
n, s, s), k). As V ′ is a list of complete linear orders and according

to Theorem 1, the winning committees in the corresponding minisum-Kemeny
election with complete linear orders equal the winning committees in a minisum-
ranksum-election. The proof that 2-TCM for minisum-ranksum is in P is analo-
gous to the proof of Theorem 102. We now show that it is possible to manipulate
(C, V ′, k) with two manipulators with identical votes if and only if it is possible

2 Note, that this problem does not equal coalitional manipulation which is proved to
be NP-hard even for two manipulators and three voters by Betzler et al. [3].
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to manipulate (C, V, k) with a single manipulator. It is possible to manipulate the
election (C, V, k) according to TCM, i. e. there exists an s such that L ⊆ K∗ for a

K∗ ∈arg min
K∈Fk(C)

(
∑

v∈V

Dist(K, v) + Dist(K, s))

= arg min
K∈Fk(C)

(2(
∑

v∈V

Dist(K, v) + Dist(K, s)))

Lemma 1= arg min
K∈Fk(C)

(
∑

v∈V ′
Dist(K, v) + 2 · Dist(K, s)).

Therefore, K∗ is a winning committee in (C, (v′
1, . . . , v

′
2n, s, s), k). The other

direction can be shown similarly. 
�

5 Conclusions

We showed that a winning committee under all minisum rules can be determined
in polynomial time, whereas the corresponding decision problem for minimax
rules is NP-hard for trichotomous votes and incomplete linear orders. In the case
of approval votes, NP-hardness was already shown by [23], and the complexity of
winner determination for minimax-ranksum remains open. Our analysis focuses
on the case where the size of the committee is known in advance. For the case
where the size of the committee is not fixed in advance, we can still measure
the disagreement of a voter with several committees of different sizes with the
Hamming distance in the case of approval or trichotomous votes. Hence for
minisum-approval and minisum-CAV it is still possible to determine a winner in
polynomial time, since it is enough to compare the disagreement for all possible
sizes of the committee. LeGrand [23] argued that the corresponding decision
problem for minimax-approval also remains NP-complete. However in the case of
complete or incomplete linear orders it is not directly clear how the disagreement
of committees of different sizes can be compared with each other. Note that in
particular the disagreement of a voter measured by the ranksum or the modified
Kemeny distance is always zero for the committee that consists of all candidates
and for the empty committee. One task for future research is to compare these
rules in terms of their axiomatic properties. Besides winner determination we
also studied manipulation in minisum elections, and obtained polynomial-time
solvability results in all cases. Another interesting question for future research
is the problem of coalitional manipulation, where not a single manipulator, but
several voters try to take influence on the outcome of the election.
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