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Abstract

Standard (offline) control scenarios in elections (such as
adding, deleting, or partitioning either voters or candidates)
have been studied for many voting systems, natural and less
natural ones, and the related control problems have been
classified in terms of their complexity. However, for one of
the most important natural voting systems, the Borda Count,
only a few such complexity results are known. We reduce
the number of missing cases by pinpointing the complex-
ity of three control scenarios for Borda elections, including
some that arguably are among the practically most relevant
ones. We also study online candidate control, an interesting
dynamical, partial-information model due to Hemaspaandra
et al. (2012a), who mainly focused on general complexity
bounds by constructing artificial voting systems—only re-
cently they succeeded in classifying four problems of online
candidate control for one natural voting system: sequential
plurality (Hemaspaandra et al. 2016). We settle the complex-
ity of another four natural cases: constructive and destructive
online control by deleting and adding candidates in sequential
Borda elections.

Introduction

In computational social choice, voting has been studied
comprehensively and profoundly, with applications ranging
from political elections over recommender systems (e.g.,
to select movies according to certain criteria (Ghosh et al.
1999)) and webpage ranking algorithms (Dwork et al. 2001)
to multiagent planning (Ephrati and Rosenschein 1993). Par-
ticular attention has been paid to using complexity as a bar-
rier to tampering with election outcomes via manipulation,
control, and bribery; recent book chapters by Conitzer and
Walsh (2016), Faliszewski and Rothe (2016), and Baumeis-
ter and Rothe (2015) provide an overview.

We focus on standard (i.e., offline) and online control sce-
narios in elections. Control actions such as adding, deleting,
or partitioning either voters or candidates have been stud-
ied for many voting systems—natural ones such as plural-
ity, Condorcet, and approval voting (Bartholdi et al. 1992;
Hemaspaandra et al. 2007), Copeland (Faliszewski et al.
2009), and Schulze voting (Parkes and Xia 2012) and less
natural ones such as variants of approval and range voting
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(Erdélyi et al. 2009; Menton 2013)—and the related control
problems have been classified in terms of their complexity.
However, for one of the most prominent natural voting sys-
tems, the Borda Count, only a few such results are known.
Related Work. Bartholdi et al. (1989), Bartholdi and Or-
lin (1991), and Conitzer et al. (2007) were the first to study
manipulation; see the chapter by Conitzer and Walsh (2016)
for an overview. For weighted Borda elections, the complex-
ity of coalitional manipulation was established early on by
Conitzer et al. (2007). The unweighted case turned out to be
more challenging; eventually, it was settled independently
by Betzler et al. (2011) and Davies et al. (2011).

Control (and bribery) of elections is surveyed by Fal-
iszewski and Rothe (2016) and Baumeister and Rothe (2015)
who provide an extensive list of references. In particular,
Bartholdi et al. (1992) introduced the standard (or offline)
constructive control settings where, roughly, an election
chair seeks to make her favorite candidate win by exert-
ing structural changes to a given election, such as adding
or deleting or partitioning either voters or candidates. Hema-
spaandra et al. (2007) introduced the corresponding destruc-
tive control settings where the chair’s goal is to prevent a
given candidate’s victory. Each of these scenarios has been
thoroughly discussed in the literature (see, e.g., the above
book chapters), along with real-world applications. How-
ever, except for plurality, not much is known about control
for scoring protocols: Hemaspaandra et al. (2014) obtained
a dichotomy result for constructive control by adding voters
in scoring protocols; some recent results on veto are due to
Maushagen and Rothe (2016); and the relatively few results
obtained for Borda so far are due to Russel (2007), Elkind et
al. (2011), Loreggia et al. (2015), and Chen et al. (2015)—
see Table 1 for an overview of their results.

Another compelling line of research, focusing specifically
on gerrymandering by analyzing geographic manipulation,
has been introduced recently by Lewenberg and Lev (2016)
(see also the related paper by Bachrach et al. (2016)).

Hemaspaandra et al. (2012a; 2012b; 2014; 2016) pro-
posed interesting new models of online manipulation and
online control in sequential elections. (A game-theoretic
approach to sequential elections was considered earlier by
Desmedt and Elkind (2010).) Unlike the standard manipula-
tion model where all voters cast their votes simultaneously
and the manipulators have complete knowledge of all vot-
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type C D C D C D C D C D C D C D C D C D C D

Borda R$ V£ R� V£ ? ? ? ? R♦ ? ? ? R§ V§ R♠ V§ R♥ V§ ? ?

Table 1: Overview of offline-control complexity results for Borda. Our notation of control types is standard (Faliszewski and
Rothe 2016). “R” means that Borda is resistant to this type of control, “V” means vulnerability to this type, and “?” means that
this is an open question. Results in boldface are established in Thm. 1 (marked by ♠), Thm. 2 (♥), and Thm. 3 (♦). The other
results are due to Russel (2007) (marked by §), Elkind et al. (2011) ($), Loreggia et al. (2015) (£), and Chen et al. (2015) (�).

ers’ preferences, in the online manipulation model (Hema-
spaandra et al. 2014) voters cast their votes one after the
other and manipulators can see the past votes but not the fu-
ture ones, so the current manipulator must decide—right in
this moment when it is her turn to vote—what vote to cast.
The manipulators have an “ideal” ranking of candidates and
their goal is, in the constructive variant, to ensure victory
for some given candidate d or a better one in their ranking
(or, in the destructive variant, to ensure that neither d nor
any worse candidate wins), no matter which votes the future
voters will cast. This “maximin” approach is inspired by the
field of online algorithms (see, e.g., the book by Borodin and
El-Yaniv (1998)). Similarly, in online voter control scenar-
ios (Hemaspaandra et al. 2012b), voters cast their votes one
after the other and now the chair must decide—right in this
moment when the current vote is cast—whether or not to ex-
ert the control action at hand (e.g., either to delete the current
vote now or not to delete it ever). Again, the chair’s goal is
either—in the constructive case—to ensure victory of some
given candidate d or a better one in her ideal ranking, or—in
the destructive case—to ensure that neither d nor any worse
candidate wins. Online candidate control (Hemaspaandra
et al. 2012a; 2016) is modeled similarly, except that now
the candidates appear in order, one after the other, and the
votes are gradually extended to include the current candi-
date when she steps forward. Hemaspaandra et al. (2012a;
2012b; 2014) provide PSPACE-completeness results for var-
ious specific scenarios in all three settings, albeit for arti-
ficially constructed voting systems. For specific scenarios
of online manipulation and online voter control in sequen-
tial elections, they also consider natural voting systems,
such as sequential plurality and veto, and provide a num-
ber of complexity results (each much lower than PSPACE-
completeness). Recently, they also found polynomial-time
algorithms solving four problems of online candidate con-
trol for the first natural voting system: sequential plural-
ity (Hemaspaandra et al. 2016).

Our Contribution. Previously, only eight (offline) control
scenarios have been studied for Borda elections: construc-
tive/destructive control by deleting/adding candidates and
by adding voters, and destructive control by deleting vot-
ers and by partition of voters in the so-called ties-eliminate
(TE) model where winners of the two subelections resulting
from a voter partition proceed to the final run-off only when
they are unique (Hemaspaandra et al. 2007). For Borda, the

above constructive control problems have been shown NP-
complete, whereas the destructive control problems have
been shown to be solvable in polynomial time (see Table 1).

We settle the complexity of offline control for three fur-
ther control scenarios that have been left open in Borda elec-
tions (again, see Table 1). Note that two of these model real-
world scenarios (namely, vote suppression and gerrymander-
ing) that arguably are among the practically most relevant
ones. Vote suppression describes various strategies to influ-
ence the outcome of an election by preventing voters to cast
their votes, effectively deleting their votes from the election
(and we may assume that the chair wants to delete as few
votes as possible so as to avoid that the control action will
be detected). This scenario is modeled by constructive con-
trol by deleting voters. Constructive control by partition of
voters models gerrymandering—which refers to maliciously
resizing voting districts—even though in a simplified vari-
ant: There is only one district that can be divided into two.
However, if—as we will show for these constructive cases—
complexity is high even in this simple setting, it will be
at least as high for more involved models of gerrymander-
ing (see, e.g., the models proposed by Erdélyi et al. (2015),
Bachrach et al. (2016), and Lewenberg and Lev (2016)).
Note further that, traditionally, control problems are defined
for unweighted elections, which typically requires more in-
volved constructions for proving hardness.

While there are several complexity results on online
manipulation and online voter control in sequential elec-
tions for some natural voting systems (Hemaspaandra et al.
2012b; 2014), Hemaspaandra et al. (2012a) originally did
not provide results on online candidate control in sequen-
tial elections for natural voting systems—only recently they
succeeded in showing that sequential plurality elections are
vulnerable to four types of online candidate control (Hema-
spaandra et al. 2016), the first such results for a natural
voting system. We establish another four such results for
sequential Borda elections: for constructive and destructive
online control by adding and by deleting candidates.

Preliminaries

An election (C,V ) is given by a set C of candidates and a list
V of votes, typically (and throughout this paper) assumed
to be linear orders over the candidates. We will express a
vote over C as a string giving the order of the candidates
from the most preferred to the least preferred one; for ex-
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ample, if C = {a,b,c,d}, a vote c b d a means that this
voter prefers c to b, b to d, and d to a. A voting system is
a rule that assigns a set of winners to each given election.
Positional scoring rules are a particularly important class of
voting rules, and among those we will consider only one
most prominent member, the Borda Count: For m candi-
dates, each candidate in position i of the voters’ rankings
scores m− i points; the winners are those candidates scoring
the most points. Let score(C,V )(x) be the number of points
candidate x receives in election (C,V ) according to Borda.
Let dist(C,V )(x,y) = score(C,V )(x)− score(C,V )(y). For a sub-

set X ⊆C, we write
−→
X in a vote as a shorthand for the rank-

ing of these candidates in an arbitrary but fixed order, and
we write

←−
X as a shorthand for their ranking in reverse order.

In the next sections we will define the control types con-
sidered here; for other standard control types, see the book
chapters by Faliszewski and Rothe (2016) and Baumeister
and Rothe (2015) and the references therein. A voting sys-
tem is susceptible to a type of control (e.g., constructive con-
trol by deleting voters) if there is an election for which the
chair can reach her goal (e.g., turning a nonwinning candi-
date into a winner) by exerting this type of control. Borda
Count is susceptible to each standard control type, includ-
ing those considered here. If a voting system is suscepti-
ble to a type of control, one studies whether it is vulnera-
ble to it (i.e., whether the associated control problem can
be solved in polynomial time) or whether it is resistant to it
(i.e., whether the associated control problem is NP-hard).

For offline control, we define our control problems in the
unique-winner model, which means that a constructive (de-
structive) control action is considered successful only if the
distinguished candidate is a unique winner (is not a unique
winner). This model better fits the ties-eliminate (TE) rule
for control-by-partition scenarios than the ties-promote (TP)
rule, according to which all subelection winners proceed to
the final run-off (Hemaspaandra et al. 2007). Using the same
constructions and slightly modified arguments, our proofs
also work in the nonunique-winner model. In this model,
for a constructive (destructive) control action to be suc-
cessful, the distinguished candidate is required to be only
a winner (to be not even a winner). For online control, we
adopt the nonunique-winner model, just as Hemaspaandra et
al. (2012a; 2012b; 2014; 2016) do.

Offline Control in Borda Elections

In this section, we solve three open problems for (offline)
control in Borda elections, starting with the following:
Borda-CCDV. Given a voting system E , the problem E -
CONSTRUCTIVE-CONTROL-BY-DELETING-VOTERS (E -
CCDV) is defined as follows (Bartholdi et al. 1992): Given
an election (C,V ), a distinguished candidate p in C, and
a nonnegative integer k, can p be made the unique win-
ner of an election resulting from (C,V ) by deleting at
most k votes? In the proof of Theorem 1 we reduce from
EXACT-COVER-BY-3-SETS (X3C) that is well known to be
NP-complete (Garey and Johnson 1979): Given a set X =
{x1, . . . ,x3k} and a family of subsets of X , S = {S1, . . . ,Sn},
each with three elements, does there exist an exact cover of

X , i.e., a subfamily S ′ ⊆ S with |S ′| = k such that each
element xi ∈ X occurs in exactly one subset S j ∈ S ′?

Theorem 1 Borda is resistant to constructive control by
deleting voters.

Proof. Membership of Borda-CCDV in NP is obvious. To
prove NP-hardness, we now describe a reduction from X3C
to Borda-CCDV. Let (X ,S ) be a given X3C instance with
X = {x1, . . . ,xm}, m = 3k, k > 1, and S = {S1, . . . ,Sn} with
Si ⊆ X and |Si| = 3 for each i, 1 ≤ i ≤ n. Construct from
(X ,S ) a Borda-CCDV instance ((C,V ), p,k) as follows.
The candidate set is C =X ∪B∪{p} with B= {b1, . . . ,b3m2}
and distinguished candidate p the chair wants to make a
unique winner. The list V of votes is constructed as follows:

1. For each i, 1 ≤ i ≤ m, there are m votes xi
−−−−→
X \{xi} p

−→
B

and m votes xi p
←−−−−
X \{xi} ←−

B .

2. For each j, 1≤ j ≤ n, there is one vote v j =
−→
S j

−→
B
−−−→
X \S j p

and one vote w j = p
←−−−
X \S j

←−
B

←−
S j .

p is not a Borda winner of election (C,V ), since
dist(C,V )(p,xi) = −m(m+ 1) = −(m2 +m) for each i, 1 ≤
i ≤ m. Note that for each candidate b j ∈ B we have
dist(C,V )(p,b j) = m ·m(|B|+(m− 1)+ 1) = 3m4 +m3. To
win the election, p needs to make up a deficit of m2 + m
points for each xi ∈ X . We claim that (X ,S ) is in X3C if
and only if ((C,V ), p,k) is in Borda-CCDV.

From left to right, suppose there is an exact cover S ′ ⊆
S . Let V ′ = {v j | S j ∈ S ′}, |V ′|= k. Consider the election
(C,V \V ′). By deleting the votes in V ′ from (C,V ), p doesn’t
lose any points because p is ranked last in these votes. How-
ever, every xi ∈ X loses at least |B|+m− 2 = 3m2 +m− 3
points once (for deleting the v j with xi ∈ S j) and at least
one point in each of the k−1 other deleted votes. Hence, we
have dist(C,V\V ′)(p,xi)≥−(m2+m)+3m2+m−3+k−1=
2m2 + k− 4 > 0 for each xi ∈ X . Since also the candidates
from B are losing points by this deletion, p still is better off
than each b j ∈ B, i.e., we have dist(C,V\V ′)(p,b j)> 0, which
makes p the unique winner of (C,V \V ′).

From right to left, suppose that p can be made a unique
winner by deleting at most k votes from (C,V ). Deleting k
votes of the form xi

−−−−→
X \{xi} p

−→
B or xi p

←−−−−
X \{xi} ←−B implies

dist(p,xi) ≤ −(m2 +m)+ k ·m = −(m2 +m)+ m2

3 < 0, so
p would still score fewer points than the candidates in X .
And deleting a vote w j for some j, 1 ≤ j ≤ n, would harm p
(who is ranked on top of these votes) even more than the xi.
However, by deleting a vote v j for some j, 1 ≤ j ≤ n, p re-
duces her deficit against the three candidates in S j by at least
3m2 +m−3 points and against the other candidates in X by
at most m−2 points. Hence, exactly k votes must be deleted
to make p a unique Borda winner; let V ′ = {va1 , . . . ,vak}
be this set. Since we have dist(C,V\V ′)(p,x f )≤−(m2 +m)+

k(m− 2) = −(m2 +m)+ m2−2m
3 < 0 for each x f ∈ X with

x f /∈⋃
1≤i≤k Sai , but dist(C,V\V ′)(p,xg)≥−(m2+m)+3m2+

m− 3 = 2m2 − 3 > 0 for each xg ∈ X with xg ∈ ⋃
1≤i≤k Sai ,

p would defeat all these xg but none of those x f . That is, p
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can defeat xi ∈ X only by deleting some voter v j, 1 ≤ j ≤ n,
such that xi ∈ S j. Since p must defeat all such candidates by
deleting k such votes, there exists an exact cover. �

Borda-CCPV-TE. For a voting system E , we now
turn to E -CONSTRUCTIVE-CONTROL-BY-PARTITION-OF-
VOTERS-TE (E -CCPV-TE), as defined by Bartholdi et
al. (1992), in the ties-eliminate model due to Hemaspaandra
et al. (2007): Given an election (C,V ) and a candidate p in C,
can V be partitioned into V1 and V2 such that p is the unique
E winner of the two-stage election where only unique E
winners of subelections (C,V1) and (C,V2) proceed to the
final run-off? We will make use of a reduction from the
well-known NP-complete problem PARTITION (Garey and
Johnson 1979): Given a set A = {1, . . . ,n} and a list s =
(s1, . . . ,sn) of nonnegative integers, can A be partitioned into
two subsets A1 and A2 such that ∑i∈A1

si = ∑i∈A2
si?

Theorem 2 Borda is resistant to constructive control by
partition of voters in the ties-eliminate model.

Proof. Obviously, Borda-CCPV-TE is in NP. To prove
NP-hardness, we now provide a reduction from PARTITION
to Borda-CCPV-TE. Given a PARTITION instance (A,s)
with A = {1, . . . ,n}, a list s = (s1, . . . ,sn) of nonnegative
integers, and K = ∑i∈A si, construct a Borda-CCPV-TE in-
stance ((C,V ), p) as follows. Let C = B(1) ∪ ·· · ∪ B(n) ∪
D∪T ∪{p,r,r∗} (with p being the distinguished candidate
the chair wants to make a unique winner) contain n sets
B(i) = {b(i)1 , . . . ,b(i)2si−1}, 1 ≤ i ≤ n, a set D = {d1, . . . ,d2K},
and a set T = {t1, . . . , t2K+2}.

As a notation, we write Di, j = {di,di+1, . . . ,d j−1,d j},
where 1 ≤ i ≤ j ≤ 2K. Construct V to consist of n+2 votes:

vi = r B(i) r∗ p T D B(1) · · · B(i−1) B(i+1) · · · B(n), i ∈ A,

vn+1 = p D1,K r∗ DK+1,2K r T B(1) · · · B(n),

vn+2 = r∗ D1,K−1 r T p DK,2K B(1) · · · B(n).

Since dist(C,V )(p,r) = 2K+2−(2K+3)−(2K+2n)< 0,
p is not a Borda winner of (C,V ). We claim that (A,s) is in
PARTITION if and only if ((C,V ), p) is in Borda-CCPV-TE.

From left to right, suppose there is a partition of A into
two sets, A1 and A2, such that ∑i∈A j si = K/2 for j ∈ {1,2}.
Assign vn+1 to V1 and vn+2 to V2. Add vi to V1 for each i∈A1,
and add the remaining votes v j with j ∈ A2 to V2.

In subelection (C,V1), p scores K + 1 points more than
r∗ and 2K + 2 points more than r due to vote vn+1 alone.
Candidate r∗ scores at most n−1 points more than p by the
other votes in V1, so dist(C,V1)(p,r∗) ≥ K + 1− (n−1) > 0,
since K ≥ n (if s1 = · · · = sn = 1, we have K = n, other-
wise we have K > n.) And r scores 2si points more than
p for each vote vi ∈V1 with 1 ≤ i ≤ n. Since ∑i∈A1

si = K/2,
dist(C,V1)(p,r)= 2K+2−2K/2=K+2> 0, so p scores more
points than r and r∗ in (C,V1). Note also that p is preferred
to all candidates of D and T in the votes of V1. A candidate
b(i)j is preferred to p in at most one vote in V1 and thus can
score at most 2maxi∈A{si} points more than p. However, p
scores at least |T |= 2K+2 points more than b(i)j in vn+1 and

thus has a higher score in total than b(i)j in (C,V1) because
K ≥maxi∈A{si}. It follows that p is the unique Borda winner
of subelection (C,V1) and proceeds to the final run-off.

In subelection (C,V2), r∗ scores K points more than r
due to vote vn+2 alone. By the other votes in V2, however,
r scores 2K/2 = K points more than r∗, since ∑i∈A2

si = K/2.
Thus dist(C,V2)(r,r

∗) = K −K = 0, so r and r∗ are tied in
(C,V2). In the votes from V2, (a) both r and r∗ are preferred
to p and to all candidates from T , (b) r is preferred to each
b(i)j ∈ B(i), and (c) r∗ is preferred to each d j ∈ D. Overall,
both r and r∗ win subelection (C,V2) and thus are both elim-
inated by the tie-handling rule. It follows that no candidate
moves forward to the final run-off from subelection (C,V2).

Being the only participant, p alone wins the run-off.
From right to left, suppose now that p can be made the

only Borda winner by some partition of V into V1 and V2.
Thus p is the only Borda winner of at least one of the sub-
elections (C,V1) and (C,V2). Without the vote vn+1, how-
ever, p cannot win a subelection, since both r and r∗ are
preferred to p in all other votes. Let (C,V1) be the subelec-
tion (with vn+1 ∈ V1) that p is the only Borda winner of.
Note that vn+2 /∈V1, since otherwise p would lose too many
points compared to r and r∗ that cannot be regained via
votes vi, 1 ≤ i ≤ n. Thus vn+2 ∈ V2. Due to the tie-handling
rule, at most two candidates can take part in the final run-
off. In direct comparison, p is defeated by r and r∗, since
dist({p,r},V )(p,r) =−n and dist({p,r∗},V )(p,r∗) =−n. There-
fore, also some votes vi, 1 ≤ i ≤ n, must belong to V2, for
otherwise r∗ would win (C,V2) and would then defeat p in
the run-off. Since neither candidates from D nor T nor some
b(i)j ∈ B(i) can win (C,V2) by adding votes vi, 1 ≤ i ≤ n,
to V2, r and r∗ must tie so as to make sure that no candi-
date can proceed from (C,V2) to the final run-off. We have
dist(C,{vn+2})(r,r

∗) =−K and dist(C,{vi})(r,r
∗) = 2si for each

i, 1 ≤ i ≤ n. Thus we need to have dist(C,V2)(r,r
∗) = −K +

∑vi∈V2
2si. Hence, dist(C,V2)(r,r

∗) = 0 requires ∑vi∈V2
2si =

2∑vi∈V2
si = 2K/2 = K to hold. Let A2 = {i | vi ∈ V2}, so

∑i∈A2
si = ∑vi∈V2

si = K/2, and with A1 = A\A2 we obtain a
partition of A such that ∑i∈A1

si = ∑i∈A2
si = K/2. �

Borda-CCRPC-TE. For a voting system E , we consider
the problem E -CONSTRUCTIVE-CONTROL-BY-RUN-OFF-
PARTITION-OF-CANDIDATES-TE (E -CCRPC-TE) in
which we ask, given an election (C,V ) and distinguished
candidate p ∈ C, whether the candidate set C can be
partitioned into two subsets C1 and C2 such that p is the
unique Borda winner of the final run-off among the Borda
winners of subelections (C1,V ) and (C2,V ) (again, only
unique subelection winners move forward). We will make
use of a reduction from 3SAT, the standard NP-complete
satisfiability problem (Garey and Johnson 1979): Given a
boolean formula ϕ in 3-CNF (i.e., with exactly three literals
per clause), does there exist a satisfying truth assignment to
ϕ? For a boolean formula ϕ , we denote by #i the number of
literals occurring in the ith clause that are negated variables.

Theorem 3 Borda is resistant to constructive control by
run-off partition of candidates in the ties-eliminate model.
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Proof. Again, membership of Borda-CCRPC-TE in NP
is obvious. To show NP-hardness, we now provide a reduc-
tion from 3SAT to Borda-CCRPC-TE. Given a 3SAT in-
stance ϕ(x1,x2, . . . ,xn), construct a Borda-CCRPC-TE in-
stance ((C,V ), p) as follows. Let X = {x1,x2, . . . ,xn} be the
set of variables and let K = {K1,K2, . . . ,Km} be the set of
clauses of ϕ , where Ki = (�

(1)
i ∨ �

(2)
i ∨ �

(3)
i ), 1 ≤ i ≤ m. Fur-

thermore, let D= {d1,d2,d3} and Di = {d j | 1≤ j ≤ i}⊆D.
Define the candidate set by C = X ∪K∪{p,r,r∗}∪D with p
being the distinguished candidate the chair wants to make a
unique winner. Define V to consist of the following votes:

1. For each i, 1 ≤ i ≤ m, there are two votes:−−−−−−−−−−−→
C \{p,Ki}∪D#i p D#i Ki and Ki p

←−−−−−−−−−−−
C \{p,Ki}∪D#i D#i .

2. For each i, 1 ≤ i ≤ m, and for each literal �(1)i , �(2)i , and

�
(3)
i , there are two votes: either Ki x j p

−−−−−−−−−→
C \{Ki,x j, p} and←−−−−−−−−−

C \{Ki,x j, p} p Ki x j if �k
i = x j is a negated variable, or−−−−−−−−−→

C \{Ki,x j, p} p x j Ki and x j Ki p
←−−−−−−−−−
C \{Ki,x j, p} if �k

i = x j
is a positive variable.

3. There are m votes of the form r∗ r
−→
K

−→
D p X and m votes

of the form r p
←−
D

←−
K r∗ X .

Since dist(C,V )(p,r) = m(−5−m−1) =−m(m+6)< 0,
p does not win in (C,V ). Note that p and r score the same
number of points in the first two groups of votes. Later
on, we will also need the following argument. Consider a
clause candidate Ki. In the first group of votes, p scores as
many points more than Ki as there are negated variables in
clause Ki, namely #i. In the second group of votes, p gains
one more point with respect to candidate Ki for each positive
variable in clause Ki, and p loses one point with respect to
candidate Ki for each negated variable in clause Ki. Since p
and Ki score the same number of points in the third group of
votes, we have dist(C,V )(p,Ki) = #i −#i +(3−#i) = 3−#i.
Assuming that one variable candidate x j is assigned to the
other subelection than p and Ki, if x j is a negated variable
in clause Ki then p gains one point with respect to candi-
date Ki, and if x j is a positive variable in clause Ki then
p loses one point with respect to Ki. Further, if C′ is the
set of candidates obtained by removing from C all variable
candidates corresponding to positive variables in clause Ki,
then dist(C′,V )(p,Ki) = 3 − #i − (3 − #i) = 0 because p is
losing as many points with respect to Ki as there are posi-
tive variables in clause Ki. That is, p and Ki are tied in their
subelection if (a) all variable candidates corresponding to
positive variables in clause Ki are removed from the sub-
election containing p and Ki (and are assigned to the other
subelection) and (b) all variable candidates corresponding
to negated variables in clause Ki remain in the subelection
with p and Ki. Therefore, for p to defeat Ki, either the sub-
election containing them also contains at least one variable
candidate corresponding to a positive variable in clause Ki,
or the other subelection contains at least one variable can-
didate corresponding to a negated variable in clause Ki, or
both. We claim that ϕ is a yes-instance of 3SAT if and only
if ((C,V ), p) is a yes-instance of Borda-CCRPC-TE.

From left to right, suppose there is a satisfying truth as-

signment α to the variables of ϕ(x1, . . . ,xn). Partition C into
C1 and C2 so that C2 contains r, r∗, and all variable candi-
dates that are set to false in α , and C1 contains all the other
candidates. r and r∗ tie in subelection (C2,V ) and are elim-
inated by the tie-handling rule. In (C1,V ) (C1 consisting of
p, D, K and all variable candidates that are set to true in α)
p beats all other candidates (in particular, the clause candi-
dates) because α is a satisfying truth assignment. Therefore,
p wins the final election as she is the only candidate left.

From right to left, suppose p is the unique overall Borda
winner for some partition of the candidates. r had to be elim-
inated in the first-round subelection; otherwise, r would have
beaten p in the run-off. This can only be achieved by r∗, who
can tie (but not beat) r in this subelection only if neither p
nor the candidates in D or K are participating. Thus C2 con-
tains r, r∗, and some variable candidates, and C1 contains
p, all candidates from D and K, and the remaining variable
candidates. In subelection (C2,V ), all winners are tieing and,
therefore, are eliminated by the tie-handling rule. Since p is
the only winner of her subelection, (C1,V ), and the run-off,
the variable candidates must have been distributed among
C1 and C2 according to the argument mentioned above. This
leads to a satisfying truth assignment if every variable candi-
date in C1 is assigned to true, and all the others to false. �

Online Control in Sequential Borda Elections

Finally, we turn to online candidate control in sequential
Borda elections. We first describe the model and the related
problems that are due to Hemaspaandra et al. (2012a; 2016),
who also provide motivating examples for these control sce-
narios in detail, ranging from TV singing/dancing talent
shows to university faculty-hiring processes. Specifically,
we restrict ourselves to formalizing online constructive con-
trol by deleting candidates for Borda, denoted by online-
Borda-CCDC. The corresponding problem for adding can-
didates (online-Borda-CCAC) and their destructive counter-
parts (online-Borda-DCDC and online-Borda-DCAC) can
be defined analogously. Capturing the election chair’s “mo-
ment of decision,” an input to online-Borda-CCDC encodes
the history of the sequential election process up to a given
point in time and specifically consists of: the candidate set C,
the set of voters V , the chair’s ideal ranking σ of the candi-
dates, a distinguished candidate d ∈C, an order in which the
candidates will show up, with flags indicating who the cur-
rent candidate is and which of the previous candidates have
been deleted, the voters’ preferences masked down to the
still-standing (i.e., already revealed but not deleted) candi-
dates, and a nonnegative integer bound k on how many dele-
tions are left for the chair to use. The question the chair now
faces is whether she has a “forced win” by either deleting or
not deleting the current candidate right in this moment (she
will never again have this choice about this current candi-
date), where by “forced win” we mean whether the set {c |
c ≥σ d} will contain a Borda winner eventually, no matter
what voter preferences will be revealed about the future can-
didates who have not shown up yet. For destructive online
control by deleting candidates, Hemaspaandra et al. (2012a;
2016) distinguish the non-hand-tied chair model where the
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chair may delete some but not all candidates “d or worse”
and the hand-tied chair model where the chair may never
delete any candidate “d or worse.”

Theorem 4 online-Borda-CCDC, online-Borda-DCDC
(both in the non-hand-tied and the hand-tied chair model),
online-Borda-CCAC, and online-Borda-DCAC are in P.

Proof. We restrict ourselves to sketching a proof that
online-Borda-CCDC is in P. The other proofs are similar.

Given an input to online-Borda-CCDC as described
above (using the same notation, e.g., d denoting the distin-
guished candidate and σ the chair’s ideal ranking of the can-
didates), we give a polynomial-time algorithm that decides
whether the chair has a forced win by either deleting or not
deleting the current candidate, c. In fact, since the chair is
facing these two options (to delete or not to delete c—unless
the number of allowed deletions is used up already in which
case c must be left in) now, our algorithm (to be described
below) will be run twice, first pretending the chair’s decision
were to leave c in, then pretending the chair’s decision were
to remove c, and if at least one run yields a forced win for
the chair, the input is accepted; otherwise it is rejected.

We call each e ∈C with e ≥σ d a good candidate and each
e ∈ C with e <σ d a bad candidate. Let b be the number of
future (i.e., as yet unrevealed) bad candidates and let g be
the number of future good candidates. Recall that all votes
at this point are masked down to the still-standing candi-
dates (but will be gradually extended when new candidates
show up). Our polynomial-time algorithm now works as fol-
lows. If there is no voter, every candidate still standing in
the end is a Borda winner with score zero, so we accept if
there is a good candidate among those, and otherwise we
reject. Further, in case all candidates have been revealed in
the current moment, we simply determine their scores, and
we accept if a good candidate has the highest score; other-
wise, we reject. So from now on we may assume that there
is at least one voter and not all candidates have shown up
yet. We now determine the scores of all already revealed but
not deleted candidates. If no good candidate has currently
the highest score, the chair does not have a forced win: It
may happen, for instance, that all future candidates will be
ranked below all currently revealed candidates in the com-
pleted votes in the end, which would mean that all currently
revealed candidates score the same number of points more
than now and they each score more points than any future
candidate, since these are ranked lower in each vote, so it is
still true that no good candidate is a Borda winner, and we
reject. (In this case, it doesn’t matter whether future candi-
dates will be deleted or not.)

Consider now the case that at least one good candidate
is currently winning. Let k ≥ 0 be the number of deletions
left for the chair to use. If k < b then there is at least one
future bad candidate that cannot be removed. In the worst
case, one such candidate ends up in the top positions of all
completed votes in the end and thus is the only Borda win-
ner, so the chair does not have a forced win and we reject. If
k ≥ b, however, all future bad candidates can be deleted by
the chair, who then is left with k− b ≥ 0 remaining possi-
ble deletions. If none of the previously revealed candidates

is bad, only good candidates remain in the election and at
least one of them will be a Borda winner in the end, so the
chair has a forced win and we accept. Therefore, we now
consider the final case that a good candidate currently has
the highest score, all future bad candidates can be deleted
with k−b≥ 0 possible deletions remaining for the chair, and
at least one bad candidate was previously revealed and not
deleted (and so will remain in the election). For each future
good candidate who will not be deleted, every other can-
didate can score at most one additional point in each vote,
depending on their relative position in the votes. In order to
spoil a forced win for the chair, some previously revealed
and not deleted bad candidate would have to score enough
additional points due to the g− (k − b) future good candi-
dates that cannot be deleted so as to have more points than
each good candidate in the end.

Let i be a bad candidate still in the election and let s be
a future good candidate. When s is being revealed, then i
makes up one point with respect to a good candidate j if
there is a vote of the form · · · i · · · s · · · j · · · . That is,
if such a bad candidate’s deficit regarding the good can-
didates is not too large and there are sufficiently many
votes of this form for all good candidates, the bad candi-
date can still become a unique Borda winner in the worst
case (for the chair). We may assume that the revealed good
candidates that won’t be deleted, call them s1, . . . ,sg−(k−b),
occur directly behind the bad candidate i in these votes:
· · · i s1 · · · sg−(k−b) · · · . For a good candidate j, let vi, j
be the number of votes in which i precedes j. Then i can
make up vi, j · (g− (k − b)) points with respect to j in the
worst case. From the remaining |V | − vi, j votes, both i and
j would gain the same number of points. Therefore, all we
need to check is whether there is a bad candidate i still in the
race such that for all good candidates j currently in the elec-
tion, score(i)+vi, j ·(g−(k−b))> score( j), where score(h)
denotes candidate h’s current score. If so, i can become a
unique Borda winner in the end, which spoils the chair’s
forced win, so we reject. Otherwise, for each bad candidate
there is a good candidate whose score is at least as high in
the end, even if the candidates still to be revealed and not
deleted will be in the worst positions for this good candi-
date: The chair has a forced win and we accept. �

Conclusions and Future Work

We have solved three open problems about the complexity
of control in Borda elections, including two that may be con-
sidered the practically most relevant ones as they model vote
suppression and gerrymandering. There are still some ques-
tions open for control in Borda, namely for partition of vot-
ers and for partition and run-off partition of candidates, each
in the TP model. More generally, settling the complexity of
control for all scoring rules, ideally obtaining dichotomy re-
sults, is a challenging task. We have also solved four cases
of online candidate control in sequential Borda elections. We
propose to establish more such results for Borda and other
natural voting systems in this compelling model.
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