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ABSTRACT

Given a set of sentences, a sentence orderer permutes the
sentences in a way that the final text is linguistically co-
herent and semantically understandable. In this work, we
focus on the binary and ternary tasks of ordering a pair of
sentences regarding their linguistic coherence. We propose a
methodology to automatically collect and annotate sentence
ordering corpora in the news domain for English and Ger-
man documents. Furthermore, we introduce a data-driven
end-to-end neural architecture to learn the order of a pair
of sentences and also recognize the cases where no ordering
can be determined due to missing context.
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1. INTRODUCTION

The order of sentences in a document is what makes a
text semantically meaningful. Assuming a single document
d = s1,82,...,8n, consisting of n sentences, there are n! pos-
sible permutations of the sentences to form a document. Ho-
wever, despite this huge search space, humans are extraor-
dinarily good at determining the order of sentences.

On the other hand, machines require the ability to deal
with linguistic concepts such as discourse coherence, lingui-
stic redundancy and contradiction, and, in general, pragma-
tics [3] to order sentences into a meaningful and coherent
text.

Various approaches have been introduced to solve the pro-
blem of sentence ordering. In [19], a similarity metric is used
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to group the sentences into clusters and sentences are selec-
ted from clusters in a way to maximize the similarity bet-
ween adjacent sentences. Lin et. al [9] make the assumption
that a coherent text implicitly favors certain types of dis-
course relation transitions. The closest to our approach are
the works of Lin and Jurafsky [8] and Chen et. al [1]. Using
a large corpus of academic texts, Chen et. al train an algo-
rithm to learn the pairwise ordering of sentences using va-
rious neural architectures. In a different approach, Lin and
Jurafsky concatenate the sentences and train a classifier to
decide whether the resulted text is coherent or not. We refer
the reader to [10] for a detailed overview of the literature.

Despite having applications in fields such as text plan-
ning [7] and question-answering [16], multi-document sum-
marization [12] is considered as one of the main applications
of sentence ordering.

In this work, we define sentence ordering as a classificati-
on task realized by a function ® : R™ x R™ — Z., where R™
and R™ are the corresponding vector representations of the
input sentences in an arbitrary semantic space. Without loss
of generality, we set m = m’ and Z = {0, 1} (binary classifi-
cation) or Z = {—1,0, 1} (multiclass classification). Given a
permutation o € ¥ of a list of sentences s = [s1, ..., sn], the
optimal order ¢* can be computed as:

n—1 n

o¥ = argmax Z Z D(55(5), So(5))

OEX i1 j=it1

(1)

Computing the optimal order using Equation 1 is com-
putationally expensive. The focus of this work is to learn
the function ® and not to predict the optimal order o*. A
possible strategy to compute o* is to use beam-search [1].

The open source implementation of our approach is hosted
on Github?.

2. ARCHITECTURE

As already stated, we treat the sentence ordering problem
as a classification task. For this, we use a deep neural archi-
tecture to minimize the cross-entropy loss function [4].

p(z|z1;22) = argmin {
p(z|lz1322)

- ) logp(eale™iaf™) ) (2)

nenN

In Equation 2, N is the total number of training samples
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and p(zn|2{™;2{™) is the estimate of the class probability
of the n-th ordered pair (:rgn),:rg")) returned by the neural
network.

The architecture of the network is depicted in Figure 1.
The network has two inputs corresponding to the ordered
sentence pair (s1,$2). We use a one-hot encoding to map
each sentence s; into a list of token indices in the vocabu-
lary V' and obtain its corresponding vector representation
5 e RIVI Furthermore, we pad each vector with a special
padding symbol to the maximum length of sentences in the
corpus. Additionally, using an embedding layer, the one-hot
encoded inputs are projected into a low-dimensional space.
The embedding layer is realized by a simple matrix multi-
plication €; = E-§; with E € R4*IVI The number of rows in
the embedding matrix is set to d = 200 and it has as many
columns as the size of the vocabulary.

We also initialize the matrix E with weights from pre-
trained embeddings. For English, we use 200-dimensional
embeddings trained using the GloVe [15] algorithm and for
German we use 200-dimensional embeddings trained on Ger-
man Wikipedia? using the continuous bag-of-words approach
introduced in [11]. Initializing the embeddings matrix with
pre-trained embeddings is especially advantageous when the
size of the training data is limited.

Sentence 1 Sentence 2

Embedding Embedding

Figure 1: Deep learning architecture

The embeddings are then concatenated into a single vector
e = e; @ es with e € R?? that forms the input to a long
short-term memory (LSTM) [6], which is a special kind of a
recurrent neural network (RNN) addressing the difficulties
in training RNNs [14].

In general, the hidden state of a vanilla RNN at time step
t is updated as shown in Equation 3:

he = 0(Whnhi—1 + Wanze + by) (3)

In Equation 3, W}, represents the recurrent weights from
the hidden layer to itself, W,, denotes the weights from
the inputs to the hidden layer, b, is the bias vector, and o
represents a non-linear function.

In LSTMs, the problem of long dependencies is addres-
sed by the introduction of cell states and gates that regulate

Zhttps://de.wikipedia.org
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if information can be added or removed from cell state. In
total, LSTMs consist of 3 gates (input, forget, and output)
and a cell state, where the forget gate controls what infor-
mation shall be thrown away, the input gate decides what
information shall be stored in the cell state, and the output
gate determines what information will be returned by the
hidden state.

We use dropout as regularization technique [5] to avo-
id overfitting. The dropout operator simply sets a random
subset of its arguments to zero. Following the work of Za-
remba et. al [17], we apply the dropout operator only to the
non-recurrent units.

In our architecture, we use two LSTMs and finally, feed
a softmax layer with the hidden state of the second LSTM
to transform the hidden state representation into predictive
probabilities. This can be formalized as follows:

pe = softmax(Whahe + bx)

(4)

We use Keras [2] to implement the proposed neural archi-
tecture. For the first LSTM we set the output dimension to
128 and for the second one to 64. Furthermore, we drop 50%
of the non-recurrent units of the LSTMs. And finally to mi-
nimize the loss function (see Equation 2), we use an adaptive
learning rate gradient descent method called Adadelta [18].

3. EXPERIMENTS

To train our neural architecture for the binary classificati-
on task, we used 30992 English and 22450 Germany samples
and tested the final model with 7748 English and 5614 Ger-
man unseen samples. For the ternary case, we used 50400
English and 36504 German samples for training and 12600
English and 9126 German samples for testing. Both train
and test sets were balanced regarding the existing labels. In
the following, the details of dataset construction and eva-
luation results are discussed in detail.

3.1 Dataset

To construct the underlying dataset for sentence ordering,
we used the Simurg® [13] corpus which is an extendable mul-
tilingual collection of online news. In total, we used 9038
German and 12145 English news documents to train and
validate our models.

To automatically label the dataset, we use a simple stra-
tegy. In the case of binary sentence ordering, for each orde-
red sentence pair (s1, s2), we define L(s1,s2) = 1 if 51 < s2.
Otherwise, we define £(s1, s2) = 0. For this, we extract the
first two sentences s1 and s2 of each news document, keep
the natural order of the sentences and label them as positive.
Additionally, we exchange the order of sentences and crea-
te a new ordered pair (s2,s1) with £(s2,s1) = 0 to create
negative examples.

The process for the ternary case is almost identical. We
define L(s1,s2) = 11if s1 < s2 and L(s1,$2) = 0 if 52 < s1.
Furthermore, £(s1,s2) = —1if s1 <...<s; <...<s2 or
§2 < ...<8; <...< s1. For this, we extract the first and
last sentence of each document and construct an ordered
pair (s1, s2). This represents a situation where s; and s, are
not adjacent and the ordered pair (si,s2) is non-coherent
due to missing context. In the remainder of this work we
abbreviate this case with NC.

3https://github.com/pasmod /simurg



3.2 Results

In total, we prepared an annotated dataset containing
63000 English and 42630 German samples for the terna-
ry classification task and 38740 English and 28064 German
samples for the binary classification problem. We randomly
split the data into an 80% training set and a 20% validation
set. We repeat the experiments three times and report the
average number of false positives, false negatives, true posi-
tives, and true negatives together with their corresponding
standard deviation.

Table 1: Confusion Matrix for English (Binary)

Predicted
True False >,
= | True | 3703 £ 22 158 £22 | 3862
é False | 223 £36 | 3662+ 36 | 3886
< >, 3927 £ 58 | 3820 £ 58 | 7748

The confusion matrices for the binary and ternary classi-
fication of English sentences are reported in Tables 1 and 2,
respectively. As the experiments are conducted multiple ti-
mes on various test sets, we report the mean values together
with their corresponding standard deviation. Note that in
the ternary case NC stands for “non-coherent”.

Table 2: Confusion Matrix for English (Ternary)

Predicted
True NC False >
_ [True [4132+20 [ 62+ 18 5+2 4200
§ NC | 77+10 | 41537 11+3 4243
2 [False | 45 £ 18 18+ 14 | 4093 T 13 | 4157
>, | 4255 £ 44 | 4234 £ 28 | 4110 £ 18 | 12600

In both binary and ternary tasks, the test set is appro-
ximately balanced. It is also observable that the number of
true positives and true negatives are very close to each other,
which indicates that the classifier performs roughly equal for
the existing labels.

Table 3: Confusion Matrix for German (Binary)

Predicted
True False >,
= [ True | 26547 | 142*7 | 2796
£ [Talse | 151 £18 | 2667 £18 | 2818
<[ 37 [2805t24 | 2809 £ 24 | 5614

The same properties also hold for the confusion matrices
for the classification of German sentences. It is also obser-
vable that the standard deviations of diagonal elements are
very low which indicates that the introduced neural archi-
tecture has a low variance. Also comparing the ratio of true
negatives to the total number of samples yields that the clas-
sifier has a low bias. Notice that for readability we rounded
all results in the confusion matrices to their next integers.

Additionally, we report the macro-averaged Fi scores for
both languages in Table 5. In the case of English sentences,
the overall macro-averaged F} scores for the binary and the

30

Table 4: Confusion Matrix for German (Ternary)

Predicted
True NC False >,
| True | 3065 %21 39+ 16 12+ 8 3117
§ NC 43+ 6 2974+ 15 | 12+ 10 | 3030
ét') False 38+ 11 45+ 15 2895+ 5 | 2979
> 3147 38 | 3058 =46 | 2920 =9 | 9126

ternary classification tasks are 0.95 and 0.98, respectively.
Interestingly, despite having an additional label in the ter-
nary task, the F score is higher than in the binary case.

Table 5: Macro-Averaged F; Scores

English German
Binary | Ternary || Binary | Ternary
True 0.95 0.97 0.94 0.97
MC 0.98 — 0.97
False 0.95 0.98 0.94 0.98
Overall 0.95 0.98 0.94 0.97

The F scores for the ternary classification of German and
English sentences are almost identical and no significant dif-
ference could be observed. The same holds for the binary
classification task.

Table 6: Macro-Averaged F; Scores (SVM)

English German
Binary | Ternary || Binary | Ternary
True 0.35 0.14 0.43 0.32
MC 0.14 — 0.12
False 0.12 0.20 0.07 0.04
Overall 0.24 0.16 0.25 0.16

We also compared the performance of our proposed algo-
rithm to a baseline support vector machine (SVM) approach
using the bag-of-words model. The results can be observed
in Table 6 and can be compared to our results presented in
Table 5. As expected, the SVM approach has much lower I}
scores compared to our approach. Furthermore, no signifi-
cant difference in F; scores for German and English can be
observed. In general, support vector machines are not a sui-
table learning algorithm to model sequential data and thus
have a poor performance on our data set.

4. CONCLUSIONS

We presented a neural architecture for classifying the lin-
guistic coherence of a pair of sentences in German or English.
In the binary case, we defined two sentences to be either ad-
jacent or not and achieved an adequate F} score of 0.95 for
English and 0.94 for German. In the ternary classification
task, we defined a third label to represent the case when the
sentences are non-coherent due to the missing context. For
this task, we achieved an F} score of 0.98 for English and
0.97 for German sentences.

For future work, we plan to extend our corpora to assu-
re the generalizability of our models and also increase the



number of the inputs in the neural architecture to find the
optimal order of multiple sentences without the use of search
algorithms.
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