
Neural Classification of Linguistic Coherence using Long
Short-Term Memories

Pashutan Modaresi
Institute of Computer Science
Heinrich Heine University of

Düsseldorf
D-40225 Düsseldorf, Germany

modaresi@cs.uni-
duesseldorf.de

Matthias Liebeck
Institute of Computer Science
Heinrich Heine University of

Düsseldorf
D-40225 Düsseldorf, Germany

liebeck@cs.uni-
duesseldorf.de

Stefan Conrad
Institute of Computer Science
Heinrich Heine University of

Düsseldorf
D-40225 Düsseldorf, Germany

conrad@cs.uni-
duesseldorf.de

ABSTRACT
Given a set of sentences, a sentence orderer permutes the
sentences in a way that the final text is linguistically co-
herent and semantically understandable. In this work, we
focus on the binary and ternary tasks of ordering a pair of
sentences regarding their linguistic coherence. We propose a
methodology to automatically collect and annotate sentence
ordering corpora in the news domain for English and Ger-
man documents. Furthermore, we introduce a data-driven
end-to-end neural architecture to learn the order of a pair
of sentences and also recognize the cases where no ordering
can be determined due to missing context.

CCS Concepts
•Computing methodologies Ñ Artificial intelligence;
Natural language processing;

Keywords
Sentence ordering; long short-term memory; neural cohe-
rence classification

1. INTRODUCTION
The order of sentences in a document is what makes a

text semantically meaningful. Assuming a single document
d � s1, s2, . . . , sn, consisting of n sentences, there are n! pos-
sible permutations of the sentences to form a document. Ho-
wever, despite this huge search space, humans are extraor-
dinarily good at determining the order of sentences.

On the other hand, machines require the ability to deal
with linguistic concepts such as discourse coherence, lingui-
stic redundancy and contradiction, and, in general, pragma-
tics [3] to order sentences into a meaningful and coherent
text.

Various approaches have been introduced to solve the pro-
blem of sentence ordering. In [19], a similarity metric is used

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FIRE ’16, December 08 - 10, 2016, Kolkata, India
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4838-6/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/3015157.3015163

to group the sentences into clusters and sentences are selec-
ted from clusters in a way to maximize the similarity bet-
ween adjacent sentences. Lin et. al [9] make the assumption
that a coherent text implicitly favors certain types of dis-
course relation transitions. The closest to our approach are
the works of Lin and Jurafsky [8] and Chen et. al [1]. Using
a large corpus of academic texts, Chen et. al train an algo-
rithm to learn the pairwise ordering of sentences using va-
rious neural architectures. In a different approach, Lin and
Jurafsky concatenate the sentences and train a classifier to
decide whether the resulted text is coherent or not. We refer
the reader to [10] for a detailed overview of the literature.

Despite having applications in fields such as text plan-
ning [7] and question-answering [16], multi-document sum-
marization [12] is considered as one of the main applications
of sentence ordering.

In this work, we define sentence ordering as a classificati-

on task realized by a function Φ : Rm � Rm
1

Ñ Z, where Rm

and Rm
1

are the corresponding vector representations of the
input sentences in an arbitrary semantic space. Without loss
of generality, we set m � m1 and Z � t0, 1u (binary classifi-
cation) or Z � t�1, 0, 1u (multiclass classification). Given a
permutation σ P Σ of a list of sentences s � rs1, . . . , sns, the
optimal order σ� can be computed as:

σ� � argmax
σPΣ

n�1̧

i�1

ņ

j�i�1

Φpsσpiq, sσpjqq (1)

Computing the optimal order using Equation 1 is com-
putationally expensive. The focus of this work is to learn
the function Φ and not to predict the optimal order σ�. A
possible strategy to compute σ� is to use beam-search [1].

The open source implementation of our approach is hosted
on Github1.

2. ARCHITECTURE
As already stated, we treat the sentence ordering problem

as a classification task. For this, we use a deep neural archi-
tecture to minimize the cross-entropy loss function [4].

p̂pz|x1;x2q � argmin
ppz|x1;x2q

!
�
¸
nPN

log ppzn|x
pnq
1 ;x

pnq
2 q

)
(2)

In Equation 2, N is the total number of training samples

1https://github.com/pasmod/reorderer

28

and ppzn|x
pnq
1 ;x

pnq
2 q is the estimate of the class probability

of the n-th ordered pair px
pnq
1 , x

pnq
2 q returned by the neural

network.
The architecture of the network is depicted in Figure 1.

The network has two inputs corresponding to the ordered
sentence pair ps1, s2q. We use a one-hot encoding to map
each sentence si into a list of token indices in the vocabu-
lary V and obtain its corresponding vector representation
~si P R|V |. Furthermore, we pad each vector with a special
padding symbol to the maximum length of sentences in the
corpus. Additionally, using an embedding layer, the one-hot
encoded inputs are projected into a low-dimensional space.
The embedding layer is realized by a simple matrix multi-
plication ~ei � E � ~si with E P Rd�|V |. The number of rows in
the embedding matrix is set to d � 200 and it has as many
columns as the size of the vocabulary.

We also initialize the matrix E with weights from pre-
trained embeddings. For English, we use 200-dimensional
embeddings trained using the GloVe [15] algorithm and for
German we use 200-dimensional embeddings trained on Ger-
man Wikipedia2 using the continuous bag-of-words approach
introduced in [11]. Initializing the embeddings matrix with
pre-trained embeddings is especially advantageous when the
size of the training data is limited.

Merge

LSTM

Dropout

LSTM

Dropout

Dense

Embedding Embedding

Sentence 1 Sentence 2

Figure 1: Deep learning architecture

The embeddings are then concatenated into a single vector
e � e1 ` e2 with e P R2d that forms the input to a long
short-term memory (LSTM) [6], which is a special kind of a
recurrent neural network (RNN) addressing the difficulties
in training RNNs [14].

In general, the hidden state of a vanilla RNN at time step
t is updated as shown in Equation 3:

ht � σpWhhht�1 �Wxhxt � bhq (3)

In Equation 3, Whh represents the recurrent weights from
the hidden layer to itself, Wxh denotes the weights from
the inputs to the hidden layer, bh is the bias vector, and σ
represents a non-linear function.

In LSTMs, the problem of long dependencies is addres-
sed by the introduction of cell states and gates that regulate
2https://de.wikipedia.org

if information can be added or removed from cell state. In
total, LSTMs consist of 3 gates (input, forget, and output)
and a cell state, where the forget gate controls what infor-
mation shall be thrown away, the input gate decides what
information shall be stored in the cell state, and the output
gate determines what information will be returned by the
hidden state.

We use dropout as regularization technique [5] to avo-
id overfitting. The dropout operator simply sets a random
subset of its arguments to zero. Following the work of Za-
remba et. al [17], we apply the dropout operator only to the
non-recurrent units.

In our architecture, we use two LSTMs and finally, feed
a softmax layer with the hidden state of the second LSTM
to transform the hidden state representation into predictive
probabilities. This can be formalized as follows:

pt � softmaxpWhxht � bxq (4)

We use Keras [2] to implement the proposed neural archi-
tecture. For the first LSTM we set the output dimension to
128 and for the second one to 64. Furthermore, we drop 50%
of the non-recurrent units of the LSTMs. And finally to mi-
nimize the loss function (see Equation 2), we use an adaptive
learning rate gradient descent method called Adadelta [18].

3. EXPERIMENTS
To train our neural architecture for the binary classificati-

on task, we used 30992 English and 22450 Germany samples
and tested the final model with 7748 English and 5614 Ger-
man unseen samples. For the ternary case, we used 50400
English and 36504 German samples for training and 12600
English and 9126 German samples for testing. Both train
and test sets were balanced regarding the existing labels. In
the following, the details of dataset construction and eva-
luation results are discussed in detail.

3.1 Dataset
To construct the underlying dataset for sentence ordering,

we used the Simurg3 [13] corpus which is an extendable mul-
tilingual collection of online news. In total, we used 9038
German and 12145 English news documents to train and
validate our models.

To automatically label the dataset, we use a simple stra-
tegy. In the case of binary sentence ordering, for each orde-
red sentence pair ps1, s2q, we define Lps1, s2q � 1 if s1 s2.
Otherwise, we define Lps1, s2q � 0. For this, we extract the
first two sentences s1 and s2 of each news document, keep
the natural order of the sentences and label them as positive.
Additionally, we exchange the order of sentences and crea-
te a new ordered pair ps2, s1q with Lps2, s1q � 0 to create
negative examples.

The process for the ternary case is almost identical. We
define Lps1, s2q � 1 if s1 s2 and Lps1, s2q � 0 if s2 s1.
Furthermore, Lps1, s2q � �1 if s1 . . . si . . . s2 or
s2 . . . si . . . s1. For this, we extract the first and
last sentence of each document and construct an ordered
pair ps1, s2q. This represents a situation where s1 and s2 are
not adjacent and the ordered pair ps1, s2q is non-coherent
due to missing context. In the remainder of this work we
abbreviate this case with NC.

3https://github.com/pasmod/simurg

29

3.2 Results
In total, we prepared an annotated dataset containing

63000 English and 42630 German samples for the terna-
ry classification task and 38740 English and 28064 German
samples for the binary classification problem. We randomly
split the data into an 80% training set and a 20% validation
set. We repeat the experiments three times and report the
average number of false positives, false negatives, true posi-
tives, and true negatives together with their corresponding
standard deviation.

Table 1: Confusion Matrix for English (Binary)

Predicted

True False
°

A
ct
u
a
l True 3703�� 22 158�� 22 3862

False 223�� 36 3662�� 36 3886
°

3927�� 58 3820�� 58 7748

The confusion matrices for the binary and ternary classi-
fication of English sentences are reported in Tables 1 and 2,
respectively. As the experiments are conducted multiple ti-
mes on various test sets, we report the mean values together
with their corresponding standard deviation. Note that in
the ternary case NC stands for “non-coherent”.

Table 2: Confusion Matrix for English (Ternary)

Predicted

True NC False
°

A
ct
u
a
l True 4132�� 20 62�� 18 5�� 2 4200

NC 77�� 10 4153�� 7 11�� 3 4243

False 45�� 18 18�� 14 4093�� 13 4157
°

4255�� 44 4234�� 28 4110�� 18 12600

In both binary and ternary tasks, the test set is appro-
ximately balanced. It is also observable that the number of
true positives and true negatives are very close to each other,
which indicates that the classifier performs roughly equal for
the existing labels.

Table 3: Confusion Matrix for German (Binary)

Predicted

True False
°

A
ct
u
a
l True 2654�� 7 142�� 7 2796

False 151�� 18 2667�� 18 2818
°

2805�� 24 2809�� 24 5614

The same properties also hold for the confusion matrices
for the classification of German sentences. It is also obser-
vable that the standard deviations of diagonal elements are
very low which indicates that the introduced neural archi-
tecture has a low variance. Also comparing the ratio of true
negatives to the total number of samples yields that the clas-
sifier has a low bias. Notice that for readability we rounded
all results in the confusion matrices to their next integers.

Additionally, we report the macro-averaged F1 scores for
both languages in Table 5. In the case of English sentences,
the overall macro-averaged F1 scores for the binary and the

Table 4: Confusion Matrix for German (Ternary)

Predicted

True NC False
°

A
ct
u
a
l True 3065�� 21 39�� 16 12�� 8 3117

NC 43�� 6 2974�� 15 12�� 10 3030

False 38�� 11 45�� 15 2895�� 5 2979
°

3147�� 38 3058�� 46 2920�� 9 9126

ternary classification tasks are 0.95 and 0.98, respectively.
Interestingly, despite having an additional label in the ter-
nary task, the F1 score is higher than in the binary case.

Table 5: Macro-Averaged F1 Scores

English German

Binary Ternary Binary Ternary

True 0.95 0.97 0.94 0.97

MC — 0.98 — 0.97

False 0.95 0.98 0.94 0.98

Overall 0.95 0.98 0.94 0.97

The F1 scores for the ternary classification of German and
English sentences are almost identical and no significant dif-
ference could be observed. The same holds for the binary
classification task.

Table 6: Macro-Averaged F1 Scores (SVM)

English German

Binary Ternary Binary Ternary

True 0.35 0.14 0.43 0.32

MC — 0.14 — 0.12

False 0.12 0.20 0.07 0.04

Overall 0.24 0.16 0.25 0.16

We also compared the performance of our proposed algo-
rithm to a baseline support vector machine (SVM) approach
using the bag-of-words model. The results can be observed
in Table 6 and can be compared to our results presented in
Table 5. As expected, the SVM approach has much lower F1

scores compared to our approach. Furthermore, no signifi-
cant difference in F1 scores for German and English can be
observed. In general, support vector machines are not a sui-
table learning algorithm to model sequential data and thus
have a poor performance on our data set.

4. CONCLUSIONS
We presented a neural architecture for classifying the lin-

guistic coherence of a pair of sentences in German or English.
In the binary case, we defined two sentences to be either ad-
jacent or not and achieved an adequate F1 score of 0.95 for
English and 0.94 for German. In the ternary classification
task, we defined a third label to represent the case when the
sentences are non-coherent due to the missing context. For
this task, we achieved an F1 score of 0.98 for English and
0.97 for German sentences.

For future work, we plan to extend our corpora to assu-
re the generalizability of our models and also increase the

30

number of the inputs in the neural architecture to find the
optimal order of multiple sentences without the use of search
algorithms.

5. ACKNOWLEDGMENTS
This work was partially funded by the German Federal

Ministry of Economics and Technology under the ZIM pro-
gram (Grant No. KF2846504) and the PhD program Online
Participation, supported by the North Rhine-Westphalian
funding scheme Fortschrittskollegs. Computational support
and infrastructure were provided by the “Centre for Infor-
mation and Media Technology” (ZIM) at the University of
Düsseldorf (Germany).

6. REFERENCES
[1] X. Chen, X. Qiu, and X. Huang. Neural Sentence

Ordering. ArXiv e-prints, July 2016.

[2] F. Chollet. Keras. https://github.com/fchollet/keras,
2015.

[3] V. Fromkin, R. Rodman, and N. Hyams. An
Introduction to Language. Cengage Learning, 2010.

[4] P. Golik, P. Doetsch, and H. Ney. Cross-Entropy vs.
Squared Error Training: a Theoretical and
Experimental Comparison. In Interspeech, pages
1756–1760, Aug. 2013.

[5] G. E. Hinton, N. Srivastava, A. Krizhevsky,
I. Sutskever, and R. Salakhutdinov. Improving neural
networks by preventing co-adaptation of feature
detectors. CoRR, abs/1207.0580, 2012.

[6] S. Hochreiter and J. Schmidhuber. Long Short-Term
Memory. Neural Comput., 9(8):1735–1780, Nov. 1997.

[7] E. H. Hovy. Planning Coherent Multisentential Text.
In Proceedings of the 26th Annual Meeting on
Association for Computational Linguistics, ACL ’88,
pages 163–169. Association for Computational
Linguistics, 1988.

[8] J. Li and D. Jurafsky. Neural Net Models for
Open-Domain Discourse Coherence. CoRR,
abs/1606.01545, 2016.

[9] Z. Lin, H. T. Ng, and M.-Y. Kan. Automatically
Evaluating Text Coherence Using Discourse Relations.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies - Volume 1, HLT ’11, pages
997–1006. Association for Computational Linguistics,
2011.

[10] W. Liu, X. Luo, J. Xuan, Z. Xu, and D. Jiang.
Cognitive Memory-inspired Sentence Ordering Model.
Knowledge-Based Systems, 104:1 – 13, 2016.

[11] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient Estimation of Word Representations in
Vector Space. CoRR, abs/1301.3781, 2013.

[12] P. Modaresi and S. Conrad. On Definition of
Automatic Text Summarization. In Proceedings of
Second International Conference on Digital
Information Processing, Data Mining, and Wireless
Communications, DIPDMWC2015, pages 33–40.
SDIWC, 2015.

[13] P. Modaresi and S. Conrad. Simurg: An Extendable
Multilingual Corpus for Abstractive Single Document
Summarization. In Proceedings of the 8th Forum for

Information Retrieval Evaluation, FIRE ’16. ACM,
2016.

[14] R. Pascanu, T. Mikolov, and Y. Bengio. On the
Difficulty of Training Recurrent Neural Networks.
CoRR, abs/1211.5063, 2012.

[15] J. Pennington, R. Socher, and C. D. Manning. GloVe:
Global Vectors for Word Representation. In Empirical
Methods in Natural Language Processing (EMNLP),
pages 1532–1543, 2014.

[16] S. Verberne, L. Boves, N. Oostdijk, and P.-A. Coppen.
Evaluating Discourse-based Answer Extraction for
Why-question Answering. In Proceedings of the 30th
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’07, pages 735–736. ACM, 2007.

[17] W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent
Neural Network Regularization. CoRR,
abs/1409.2329, 2014.

[18] M. D. Zeiler. ADADELTA: An Adaptive Learning
Rate Method. CoRR, abs/1212.5701, 2012.

[19] R. Zhang. Sentence Ordering Driven by Local and
Global Coherence for Summary Generation. In
Proceedings of the ACL 2011 Student Session, HLT-SS
’11, pages 6–11. Association for Computational
Linguistics, 2011.

31

