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Abstract. Incomplete knowledge in argumentation frameworks may
occur during the single steps of an elicitation process, when merging
different beliefs about the current state of an argumentation framework,
or when it is simply not possible to obtain complete information. The
semantics of argumentation frameworks with such incomplete knowledge
have previously been modeled in terms of an inco mplete attack relation
among the given arguments by Cayrol et al. [12] or when adding an argu-
ment that interacts with already present arguments [14]. We propose a
more general model of argument-incomplete argumentation frameworks
with a variable set of arguments, and we study the related verification
problems for various semantics in terms of their computational complex-
ity.

1 Introduction

A discussion between human beings is a form of communicating opinions and
thoughts about a given subject. These opinions and their interactions are often
highly complex and thus hard to formalize mathematically. The goal of abstract
argumentation is to model discussions between (human or software) agents by
abstracting from the actual content of arguments and from the reasons of why
they attack each other, and instead to consider a given set of arguments along
with an attack relation on it and to find certain subsets of the arguments that
fulfill certain justification criteria. In 1995, Dung [18] introduced a formal model
to describe discussions abstractly. His model uses a graph structure where the
nodes represent arguments, and the attacks between arguments are modeled
through directed edges. He also introduced various semantics, i.e., criteria that
can express different kinds and levels of justification for certain subsets of the
arguments. His highly influential model has been used by many researchers, who
developed additional ideas of how to extend it so as to make it an elegant, rich,
and attractive model for abstract group argumentation. We refer the reader to
the book by Rahwan and Simari [30] for more background on abstract argumen-
tation in artificial intelligence.

In this paper, we develop a new model for argumentation frameworks on the
basis of Dung’s work [18], namely, argument-incomplete argumentation frame-
works. Our goal is to extend the standard model by allowing uncertainty over
the set of arguments. In our model, we have a set of arguments that already
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are known to exist, and another set of arguments that in addition contains
those arguments which might become relevant in a later state of the discussion.
We study properties and semantics, namely conflict-freeness, admissibility, pre-
ferredness, stability, completeness, and groundedness, suitably adapted to the
argument-incomplete setting, where we distinguish between properties holding
possibly and necessarily. Besides the formal model, the main contribution of this
work are complexity results of appropriately extended variants of the verifica-
tion problem [19], asking whether or not a given set of arguments will fulfill a
previously specified property either possibly or necessarily.

Related Work and Motivation: In real-world discussions we cannot assume to
know all arguments or attacks in advance, or how important they are for the
discussion, or to fully capture the dynamics of a discussion. Therefore, we are
trying to take an early step to model situations in which complete information is
not available by allowing the set of arguments to be uncertain. This can happen,
for example, in a well developed discussion in which many, or even all, possible
arguments are known already but where certain external limitations can change,
which may have an impact on the validity or importance of the arguments. It may
be safe to assume that some of the arguments are always valid, but which of the
uncertain arguments are valid may depend on the circumstances. For example, if
the citizens of a town discuss whether a public swimming pool, an opera house,
or a library are to be built, it will have an impact on some of the arguments
if it suddenly turns out that the budget deficit is higher than expected—some
arguments may then be invalid or less important, while others remain valid and
crucial. It would be interesting to know which sets of arguments (possibly also
containing uncertain arguments) are justified for different limitations.

As another example, consider the case of different knowledge bases of agents.
All the agents share the same set of possible arguments, but they disagree on
their importance. Hence, every agent has her own “belief stage” resulting in
different individual views on the argumentation framework. Such belief-staged
argumentation frameworks can be modeled by an argument-incomplete argu-
mentation framework, and so can the aggregated opinion of the agents, obtained
by agreeing on some arguments to be important, leaving the others as uncertain.

Modeling discussions via argument-incomplete argumentation frameworks
may help to answer the question of whether it is possible to make early decisions
about which sets of arguments will fulfill certain criteria possibly (i.e., in at least
one way regarding currently uncertain arguments that may arise—or turn out to
be important—in the future) or necessarily (i.e., in any way regarding currently
uncertain arguments that may arise—or turn out to be important—in the future).

The need for a model that is capable of capturing these ideas is also moti-
vated by the interdisciplinary graduate school “Online Participation”1 run by
Heinrich-Heine-Universität Düsseldorf in cooperation with Fachhochschule für
öffentliche Verwaltung and with a number of practice partners and municipal coun-
cils. Researchers from the social sciences, political science, communication science,

1 We refer to the website http://www.fortschrittskolleg.de for further details.

http://www.fortschrittskolleg.de
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and computer science are involved in creating a broad knowledge base about how
to discuss in online platforms, as well as in designing a software tool for performing
this in practice. This work aims to provide a solid theoretical foundation.

Incomplete argumentation frameworks have been introduced by Cayrol
et al. [12], who define so-called “partial argumentation frameworks” by distin-
guishing the attacks into those that are definitely part of the argumentation
framework, those that are definitely not part of the argumentation framework,
and those that are not certain—but possible—to occur. They further define a
completion of such a partial argumentation framework as a standard argumen-
tation framework that contains all the arguments of the partial argumentation
framework, at least the attacks definitely contained, and maybe also some of
the possible attacks. We use a similar idea in our model of argument-incomplete
argumentation frameworks.

The model of Cayrol et al. [13,14] to study changes in the argument set has
a different goal than our model. They introduce change operations that allow
for the addition or deletion of one attack, or one argument together with a set
of attacks regarding this argument. Their work focuses on a classification of how
such changes can possibly alter the outcome.

Other approaches regarding changes in the argument set are due to Boella
et al. [7], who define general principles for the abstraction of arguments and
attacks, mainly for the grounded semantics. They address the question of which
arguments or attacks can be removed such that the extensions remain unchanged.

In so-called “probabilistic argumentation frameworks” (introduced by Li
et al. [26]; for more information, see the work of Doder and Woltran [17]), every
argument and attack has an associated probability that yields the likelihood of
that argument or attack to be part of an induced argumentation framework. This
can be seen as an intermediate state between complete knowledge and incom-
plete information. Li et al. [26] show that computing the probability of a set of
arguments being justified regarding a semantics can be intractable. Therefore,
the authors approximate it by means of a Monte-Carlo simulation. Fazzinga
et al. [20] show that this computation indeed is hard for, e.g., the complete,
grounded, and preferred semantics, but is easy for stability and admissibility.
They further discuss approximation algorithms [21].

Baumeister et al. [6] describe a model of attack -incomplete argumentation
frameworks.

The idea of extending models of complete information to allow for incomplete
information is not new; it has been applied, e.g., in the field of computational
social choice, especially in voting theory (see, e.g., the book chapters by Boutilier
and Rosenschein [8] and Baumeister and Rothe [1]). Konczak and Lang [23]
introduced the notions of possible and necessary winners in elections, which
then were studied in different variants (see, e.g., Konczak and Lang [23], Xia
and Conitzer [33], Lang et al. [24], and Chevaleyre et al. [15]) and for different
settings (see, e.g., the work of Baumeister et al. [2,3]). Other fields in which the
notions of possibility and necessity are used include judgment aggregation [4],
fair division [5,9–11], and algorithmic game theory [25].
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This paper is structured as follows. In Sect. 2, we introduce the known model
of abstract argumentation frameworks, and we provide the needed notions from
complexity theory. In Sect. 3, we describe our model for attack-incomplete argu-
mentation frameworks and present our results. Section 4, finally, gives our con-
clusions and comments on some open questions.

2 Preliminaries

In this section, we introduce formal definitions of the central notions related to
(classical) argumentation frameworks. The basic ideas are due to Dung [18],
and we will be using some notation from the book chapter by Dunne and
Wooldridge [19].

An argumentation framework AF is a pair 〈A ,R〉, where A denotes a set
of arguments, and R ⊆ A ×A the attack relation. For every pair (a, b) ∈ R we
say a attacks b, and for simplicity we often write a → b. If a → b and b → a, we
simply write a ↔ b. Every argumentation framework AF = 〈A ,R〉 can be seen
as a directed Graph GAF = (V,E) by using the arguments as vertices and the
attacks as edges, i.e., V = A and E = R.

Before going into further detail of the abstract argumentation scheme by
Dung, we will present an easy example, which will be used again later on.

Example 1. Assume we have seven arguments, {a, b, c, d, e, f, g}, and nine
attacks: a → b, a → c, b → d, c → d, e → d, e ↔ f, e → g, and g → g. Then
the appropriate argumentation framework is

AF = 〈A ,R〉 =〈{a, b, c, d, e, f, g, },

{(a, b), (a, c), (b, d), (c, d), (e, d), (e, f), (e, g), (f, e), (g, g)}〉.

The graph representation GAF of this argumentation framework is shown in
Fig. 1.

We now define properties in argumentation frameworks, mainly for sets
of arguments. All of them were introduced by Dung [18]. We start with the
three most basic properties: conflict-freeness, acceptability, and admissibility.
Let AF = 〈A ,R〉 be an argumentation framework.

– A set S ⊆ A is called conflict-free if there are no arguments a, b ∈ S such
that a → b.

– An argument a ∈ A is called acceptable with respect to S ⊆ A if for all
arguments b ∈ A with b → a, we have at least one argument c ∈ S such that
c → b.

– A conflict-free set S ⊆ A is called admissible if every argument a ∈ S is
acceptable with respect to S.

More advanced properties are preferredness, stability, completeness, and
groundedness, and Dung calls them semantics in his work [18].



Verification in Argument-Incomplete Argumentation Frameworks 363

a

b

c

d

efg

Fig. 1. The graph GAF = (A ,R) for the argumentation framework AF = 〈A ,R〉
from Example 1

– A set S ⊆ A is called preferred if S is a maximal (with respect to set
inclusion) admissible set.

– A set S ⊆ A is called stable if S is conflict-free and for all arguments
b ∈ A �S, there is at least on argument a ∈ S with a → b.

– A set S ⊆ A is called complete if S is admissible and contains all arguments
a ∈ A that are acceptable with respect to S.

– A set S ⊆ A is called grounded if S is the least (with respect to set inclusion)
fixed point of the characteristic function of the argumentation framework.
The characteristic function FAF of the argumentation framework AF is a
function FAF : 2A → 2A defined by

FAF (S) = {a ∈ A | a is acceptable with respect to S}.

The characteristic function is monotonic with respect to set inclusion, and
there always is exactly one least fixed point. Hence, there always is exactly one
grounded set for a given argumentation framework. Additionally, starting with
an arbitrary subset of the arguments, there always is an i ∈ N such that the i-
fold composition of the characteristic function has a fixed point. All those fixed
points are exactly the complete sets of the given argumentation framework.

Dung [18] shows how those above defined properties are related to each other.
In particular, he proved that there always is a preferred set, and that every admis-
sible set is a subset of a preferred set, every stable set is preferred, and every
preferred set is complete. As already mentioned, there is exactly one grounded
set in a given argumentation framework, and it is obviously complete. It is easy
to see that a stable or a preferred set can be the grounded set, but there are argu-
mentation frameworks in which the grounded set is neither preferred nor stable.
Finally, every complete set is admissible and every admissible set is conflict-free,
due to their definitions. Figure 2 summarizes these results.

In this work, we will focus on the six properties for sets of arguments intro-
duced above. In the literature, conflict-freeness and admissibility are not called
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Fig. 2. A summary over how the different properties for sets of arguments used in this
paper are correlated

semantics, as they are often considered to be basic conditions. However, for the
sake of simplicity, we will call all these properties semantics.

Dung [18] also introduced the term “extension”. For a given argumentation
framework AF and a semantics s, a subset S of the arguments is called s exten-
sion of AF if S fulfills the conditions of semantics s.

We will now illustrate the above semantics in an example.

Example 2. Consider again the argumentation framework from Example 1, illus-
trated in Fig. 1. The only stable extension in this argumentation framework is
{a, e}. Besides this, there is another preferred extension, namely {a, d, f}. There
are no more preferred extensions. The unique grounded extension is {a}, but it
is neither preferred nor stable. Besides those three extensions, there are no fur-
ther sets that are complete. The only other admissible sets are ∅, {e}, {f}, and
{a, f}. g is not part of any extension, as the self-attack always yields a conflict,
and b or c is never part of any admissible set, because argument a which attacks
them is never attacked itself.

We will now briefly mention the notions from complexity theory that we
use in this paper. We assume the reader to be familiar with the basic notions,
like the complexity classes P, NP, and coNP, as well as hardness, complete-
ness, polynomial-time many-one-reducibility, ≤p

m, and the notion of (oracle) Tur-
ing machines. The complexity class DP was introduced by Papadimitriou and
Yannakakis [29] as the class of the differences of two NP problems. DP is also
the second level of the boolean hierarchy over NP. Σp

2 = NPNP contains those
problems that are solvable by a nondeterministic oracle Turing machine with
access to an NP oracle, and was introduced, together with Πp

2 = coNPNP, by
Meyer and Stockmeyer [27,31] as the second level of the polynomial hierarchy.
It is known that P ⊆ NP ⊆ DP ⊆ Σp

2, but it is not known whether any of these
inclusion is strict. For further details, see [28].

Dunne and Wooldridge [19] give an overview over decision problems defined
for argumentation frameworks. Among others, they investigate Verification,
Credulous-Acceptance, Skeptical-Acceptance, Existence, and Non-
emptiness for several semantics. Many of those decision problems are hard to
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decide, as they are complete for NP, coNP, DP, or even Πp
2 . We will focus on

Verification (while we are going to change their notation slightly), which is
easy to decide for all semantics studied here, except for preferredness for which
it is known to be coNP-complete [16]. All easiness results follow immediately
from the work of Dung [18].

s-Verification

Given: An argumentation framework 〈A ,R〉 and a subset S ⊆ A .

Question: Is S an s extension of AF?

The boldfaced letter s is a placeholder for any of the six semantics defined
above. For better readability, we will use cf for conflict-freeness, ad for admis-
sibility, pr for preferredness, st for stability, cp for completeness, and gr for
groundedness.

3 Argument-Incomplete Argumentation Frameworks

We now turn to our model extending classical argumentation frameworks:
argument-incomplete argumentation frameworks. Cayrol et al. [12] introduced
a model of incomplete argumentation framework in which the exact attacks are
unknown. Cayrol et al. [14] discuss a model that allows for one of the following
four so-called change operations: The addition (1) or deletion (2) of one attack,
the addition of one argument together with at least one attack regarding this
argument (3), and the deletion of one argument together with all correspond-
ing attacks (4). Their goal is to find different classifications for how the set of
all extensions (of a given semantics and argumentation framework) alter after
applying one change. In contrast, we want to verify those sets of arguments
(of a given semantics and argumentation framework) that can become once or
remain always extensions for arbitrarily many changes in the argument set. After
describing our model, we will study the computational complexity of the ver-
ification problem for various semantics in argument-incomplete argumentation
frameworks.

3.1 Model

In our setting we do not know exactly which arguments will be part of the final
discussion, but we know a set of arguments that are important already, and have
a vague idea of which arguments may be important in the future. Formally, our
model is defined as follows.

Definition 1. An argument-incomplete argumentation framework is a triple
〈A ′,A ,R〉, where A′ and A with A′ ⊆ A are sets of arguments, and R ⊆ A×A
is an attack relation.

The arguments in A ′ are those arguments that definitely are already part
of the discussion. A contains, additionally to the arguments in A ′, also those
arguments that could possibly join the discussion in the future.
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Definition 2. Let IAF = 〈A ′,A ,R〉 be an argument-incomplete argumenta-
tion framework. For a set A ∗ of arguments with A ′ ⊆ A ∗ ⊆ A , define the
restriction of R to A ∗ by

R|A ∗ = {(a, b) ∈ R | a, b ∈ A ∗}.

AF ∗ = 〈A ∗,R|A ∗〉 is called a completion of IAF .

Why is it plausible to assume that the number of possible arguments is finite?
An answer to this question is that in real-world applications it is relatively safe to
assume that the number of participants that are part of an discussion is limited,
and that no individual has an infinite number of ideas to propose as arguments.
In such scenarios, the total number of arguments must be finite. Also, why
is it plausible to assume that all arguments are known in advance? Because
in real-world applications arguments that do not have enough support by the
participants are not important for the discussion. As soon as a new argument
is introduced, however, we can ask how this argument is related to the existing
arguments, and thus learn step by step new arguments and attacks once they
come to life and then maybe become significant.

We now extend the definitions for classical argumentation frameworks to
argument-incomplete ones, distinguishing between properties holding either pos-
sibly or necessarily.

Definition 3. Let IAF = 〈A ′,A ,R〉 be an argument-incomplete argumenta-
tion framework. For a property s, call a subset S ⊆ A of arguments

– possibly s in IAF if there is a completion AF ∗ = 〈A ∗,R|A ∗〉 of IAF such
that S|A ∗ = S ∩ A ∗ is s in AF ∗ and

– necessarily s in IAF if for all completions AF ∗ = 〈A ∗,R|A ∗〉 of IAF ,
S|A ∗ = S ∩ A ∗ is s in AF ∗.

We call a set S a possibly (respectively necessarily) s extension of IAF if S
is possibly (respectively necessarily) s in IAF .

Remark 1. The following concluding remarks hold for all argument-incomplete
argumentation frameworks.

– The possible and necessary semantics inherit the correlations of the proper-
ties from Dung’s model, i.e., for example, possible stability implies possible
preferredness.

– There always is a possibly preferred extension and a possibly grounded exten-
sion.

– A possibly grounded extension is not unique, but there is at most one neces-
sarily grounded extension.

– Let S be a possibly s extension of 〈A ′,A ,R〉, 〈A ∗,R|A ∗〉 a completion such
that S is an s extension of 〈A ∗,R|A ∗〉, and a ∈ A �A ∗. Then S ∪ {a} is a
possibly s extension of 〈A ′,A ,R〉 as well. We call those possibly s extensions
trivial supersets (of S).
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Example 3. Consider again the argumentation framework from Example 1 but
assume that some arguments, namely b, e, and g, are not certain yet. Then we
have the argument-incomplete argumentation framework

IAF = 〈A ′,A ,R〉 =〈{a, c, d, f}, {a, b, c, d, e, f, g},

{(a, b), (a, c), (b, d), (c, d), (e, d), (e, f), (e, g), (f, e), (g, g)}〉.

Figure 3 illustrates this argument-incomplete argumentation framework. Solid
vertices represent members of A ′, while dotted vertices stand for elements of
A �A ′. Dashed arcs symbolize the incoming and outgoing attacks of the ele-
ments A �A ′. Note that the attacks drawn as black arcs will always be in any
completion, while those attacks (x, y) drawn as dashed arcs are part of a com-
pletion if and only if x and y both are arguments in that completion.

a

b

c

d

efg

Fig. 3. The representation of the argument-incomplete argumentation framework
IAF = 〈A ′,A ,R〉 from Example 3

First, let us consider possibly s extensions of IAF . Obviously, all s exten-
sions of the original argumentation framework AF are possibly s extensions of
IAF . Hence, {a, e} is possibly stable (and also possibly preferred, possibly com-
plete, and possibly admissible). However, {a, d, f} is also possibly stable, as it is
stable in the completion 〈A ′,R|A ′〉, and there are no other possibly stable nor
possibly preferred sets, except for trivial supersets. {a} is the grounded exten-
sion of AF , and it remains to be a possibly grounded extension of IAF , but
additionally {a, d, f} is possibly grounded, as it is the unique grounded exten-
sion of 〈A ′,R|A ′〉. It is easy to see that there are no more possibly grounded
extensions, and that the only possibly complete sets are {a}, {a, e}, and {a, d, f}
(both except for trivial supersets). Besides the admissible sets of AF , there is
one more possibly admissible set of IAF (except for trivial supersets), namely
{a, d}, which is admissible in, e.g., the completion 〈A ′,R|A ′〉.

To find all necessarily s extensions of IAF , it is sufficient to check whether
the possibly s extensions mentioned above, except for trivial supersets, are s
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extensions of all completions. Hence, there is no necessarily stable extension, as
{a, e} ∩ A ′ is not stable in 〈A ′,R|A ′〉 and {a, d, f} is not stable in 〈A ,R〉,
and the same completions also prevent {a} and {a, d, f} from being necessarily
grounded. The only necessarily preferred extension is {a, d, f}, because {a, e} ∩
A ′ is not preferred in 〈A ′,R|A ′〉. {a} and {a, e} are not necessarily complete
because of the completion 〈A ′,R|A ′〉. Lastly, all possibly admissible sets except
for {a, d} are also necessarily admissible.

3.2 Possible and Necessary Verification

Using s-Verification as a starting point, we define two decision problems for
argument-incomplete argumentation frameworks.

s-Arg-Inc-Possible-Verification (s-ArgIncPV)

Given: An argument-incomplete argumentation framework IAF =
〈A ′,A ,R〉 and a set S ⊆ A .

Question: Is S a possibly s extension of IAF?

s-Arg-Inc-Necessary-Verification (s-ArgIncNV)

Given: An argument-incomplete argumentation framework IAF =
〈A ′,A ,R〉 and a set S ⊆ A .

Question: Is S a necessarily s extension of IAF?

Note that we do not make any restrictions on the choice of the set S in the
problem instance, but restrict it to the arguments that occur in the completion
when asking whether it is an extension. This captures the setting where all
elements in S ∩ A′ must be contained in our final restriction of S, whereas
this is not decided yet for the elements in S ∩ (A �A ′). Furthermore, it is
not a restriction that only elements from A′ are sure to be in our final set,
since other elements that should definitely be in the final set may be added to
our argumentation framework in advance. Hence, this is a reasonable choice in
argument-incomplete argumentation frameworks.

We will start the discussion of argument-incomplete argumentation frame-
works with an easy result for conflict-freeness.

Proposition 1. cf-ArgIncPV and cf-ArgIncNV both are in P.

Proof. First, it holds that (〈A ′,A ,R〉, S) ∈ cf-ArgIncPV if and only if
S|A ′ is conflict-free in 〈A ′,R|A ′〉, because any conflict in 〈A ′,R|A ′〉 can also
be found in any other completion. Second, it holds that (〈A ′,A ,R〉, S) ∈
cf-ArgIncNV if and only if S is conflict-free in 〈A ,R〉, because if there is
no conflict in 〈A ,R〉, there is no other completion that can possibly have con-
flicts. �

Now, we will turn to the other semantics. By definition of the decision prob-
lems, it is obvious that for s ∈ {ad, st, cp, gr}, s-ArgIncPV is in NP and s-
ArgIncNV is in coNP, as those four properties are easy to check. However, no
polynomial-time algorithm is known to check for preferredness.
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A trivial upper bound for PR-ArgIncPV can be obtained by the following—
perhaps somewhat naive—approach: Check all supersets of the given set S as
to whether they are admissible, and output “yes” if and only if the answer is
always “no.” Each of these checks is possible in polynomial time, and hence PR-
ArgIncPV is in Σp

2 . However, the problem PR-AttIncNV also is in coNP. As
in the corresponding problem PR-ArgIncNV for attack-incomplete argumen-
tation frameworks, the complement of PR-ArgIncNV is in NP. It is possible to
check in polynomial time whether, given a completion 〈A ∗,R|A ∗〉 of IAF and
a set S∗ ⊆ A ∗ : S|A∗ ⊂ S∗, either S∗ is admissible or S is not admissible. All
these trivial upper bounds are summarized in the following lemma.

Lemma 1. 1. pr-ArgIncPV is in Σp
2 .

2. For s ∈ { ad, st, cp, gr}, s-ArgIncPV is in NP.
3. For s ∈ { ad, st, cp, gr, pr}, s-ArgIncNV is in coNP.

We will now turn to showing lower bounds of these problems. We start with
a straightforward reduction from PR-Verification to show coNP-hardness of
the problems pr-ArgIncPV and pr-ArgIncNV.

Proposition 2. pr-ArgIncPV is coNP-hard and the problem pr-ArgIncNV
is coNP-complete.

Proof. We show coNP-hardness by a reduction from the coNP-complete
problem pr-Verification. Let (〈A ,R〉, S) be a given instance of pr-
Verification, and construct from it (〈A ,A ,R〉, S), considered as an instance
of both pr-ArgIncPV and pr-ArgIncNV. In the argument-incomplete argu-
mentation framework, there are no arguments that can possibly join the discus-
sion. Hence, the only completion in both cases is the argumentation framework
〈A ,R〉. Now, it is easy to see that

(〈A ,R〉, S) ∈ pr-Verification

⇐⇒ (〈A ,A ,R〉, S) ∈ pr-ArgIncPV

⇐⇒ (〈A ,A ,R〉, S) ∈ pr-ArgIncNV.

This completes the proof. �
Theorem 1. ad-ArgIncPV is NP-complete.

Proof. As already mentioned, we only need to show NP-hardness. To this end,
we reduce from the following NP-complete problem (see the book by Garey and
Johnson [22]):

Exact-Cover-By-3-Sets (X3C)

Given: A set B = {b1, . . . , b3k} and a family S of subsets of B,
with ‖Sj‖ = 3 for all Sj ∈ S .

Question: Does there exist a subfamily S ′ ⊆ S of size k that exactly
covers B, i.e.,

⋃
Sj∈S′ Sj = B?
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Given an instance (B,S ) = ({b1, . . . , b3k}, {S1, . . . , Sm}) of X3C, we con-
struct an instance (〈A ′,A ,R〉, S) of ad-ArgIncPV as follows:2

A ′ = {x} ∪ B,

A = {x} ∪ B ∪ S ,

R = {(bi, x) | bi ∈ B} ∪
{(Sj , bj1), (Sj , bj2), (Sj , bj3) | Sj = {bj1 , bj2 , bj3} ∈ S } ∪
{(Si, Sj), (Sj , Si) | Si, Sj ∈ S and Si ∩ Sj �= ∅},

S = {x} ∪ S .

In particular, A contains one argument bi for every element bi ∈ B, 1 ≤
i ≤ 3k, one argument Sj for every set Sj in S , 1 ≤ j ≤ m, and one additional
argument x. All arguments corresponding to elements of B attack x, and each
argument Sj attacks the three arguments corresponding to those elements of B
that belong to Sj in S . Additionally, there are attacks between Si and Sj if the
corresponding sets in S are not disjoint. Finally, A ′ and S act as opponents: x
belongs to both, but the arguments corresponding to elements in B belong to A ′

only, whereas the arguments corresponding to the sets in S belong to S only.
See Fig. 4 for two examples of this construction: Fig. 4a shows a yes-instance
of ad-ArgIncPV created from a yes-instance of X3C, and Fig. 4b shows a
no-instance of ad-ArgIncPV created from a no-instance of X3C.

We claim that (B,S ) ∈ X3C if and only if (〈A ′,A ,R〉, S) ∈
ad-ArgIncPV.

(=⇒) Clearly, if (B,S ) is a yes-instance of X3C, we can add exactly those
arguments Si to A ′ that correspond to an exact cover of B. Let A ∗ be the
argument set of this completion. In A ∗, every bi, 1 ≤ i ≤ 3k, is attacked by
exactly one argument Sj , 1 ≤ j ≤ m, as of the exact cover. Hence, x ∈ S|A ∗

is defended against every attack. Additionally, the arguments Sj in A ∗ have
no attacks between them, because the corresponding sets are pairwise disjoint,
which implies that no new attacks on the elements of S|A ∗ are introduced. But
this means that S|A ∗ is admissible in 〈A ∗,R|A ∗〉.

(⇐=) If there is a completion with the argument set A ∗, this completion
must defend x against every bi, 1 ≤ i ≤ 3k. This means that there must exist a
cover of the elements of B by the sets of S . But because the arguments Sj attack
each other whenever they are not disjoint, this cover must be exact; otherwise,
the set S|A ∗ would not be conflict-free. Hence, there exists an exact cover of B. �

We now try to tighten the bounds of s-ArgIncPV for each s ∈ {st, cp, gr,
pr}. The first step is proving NP-hardness in all four cases. By Lemma 1, this
gives NP-completeness for s ∈ {st, cp, gr}. Later on, we will use this results
for s = pr, as well as the result for coNP-hardness, to show DP-hardness.

Theorem 2. For s∈ {st, cp, gr}, s-ArgIncPV is NP-complete, and pr-
ArgIncPV is NP-hard.
2 We slightly abuse notation and use the same identifiers for both instances; it will

always be clear from the context, though, which instance an element belongs to.
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x

b1 b2 b3 b4 b5 b6

S1 S2 S3

(a)S = {{b1,b2,b3},{b3,b5,b6},{b4,b5,b6}}.
(B,S ) is a yes-instance of X3C that yields a
yes-instance of AD-ARGINCPV.

x

b1 b2 b3 b4 b5 b6

S1 S2 S3

(b)S = {{b1,b2,b3},{b3,b5,b6},{b2,b4,b6}}.
(B,S ) is a no-instance of X3C that yields a
no-instance of AD-ARGINCPV.

Fig. 4. Two examples of the reduction from X3C to ad-ArgIncPV. Both X3C
instances have B = {b1, . . . , b6}. All the arguments belong to A , A ′ contains the
solid arguments only, and the thick arguments are part of S.

Proof. Again, membership of the three former problems in NP is clear. It
remains to show hardness for all four problems. We do this by showing that
the reduction used in Theorem 1 also works for those four problems. To this
end, we will prove that

(〈A ′,A ,R〉, S) ∈ ad-ArgIncPV

⇐⇒ (〈A ′,A ,R〉, S) ∈ st-ArgIncPV

⇐⇒ (〈A ′,A ,R〉, S) ∈ pr-ArgIncPV

⇐⇒ (〈A ′,A ,R〉, S) ∈ gr-ArgIncPV

⇐⇒ (〈A ′,A ,R〉, S) ∈ cp-ArgIncPV

holds for the instance (〈A ′,A ,R〉, S) constructed in the proof of Theorem 1.
((〈A ′,A ,R〉, S) ∈ ad-ArgIncPV implies (〈A ′,A ,R〉, S) ∈

st-ArgIncPV): If S|A∗ is admissible for a completion 〈A ∗,R|A ∗〉, it in partic-
ular is conflict-free. We know from the reduction that 〈A ∗,R|A ∗〉 only contains
arguments Sj that do not attack each other, and all these arguments belong to
S|A∗ . Hence, the only arguments outside of S|A∗ are the bi’s. But all of them
are attacked, as explained in the proof of Theorem 1. Therefore, S|A∗ is a stable
extension of 〈A ∗,R|A ∗〉.

((〈A ′,A ,R〉, S) ∈ pr-ArgIncPV implies (〈A ′,A ,R〉, S) ∈
gr-ArgIncPV): If S|A∗ is preferred for a completion 〈A ∗,R|A ∗〉, it is admis-
sible, and thus the only arguments that are not attacked by any other argument
are those Sj that correspond to an exact cover. This means for the character-
istic function of this completion 〈A ∗,R|A ∗〉 that the output of the first step is
the set that contains exactly those Sj . In the second step, we add argument x,
because all those Sj defend x against all attacks from the arguments bi. No new
arguments are added in step three.
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Therefore, this set is the grounded extension of the argumentation framework
〈A ∗,R|A ∗〉. But this set is exactly the set S|A∗ . Hence, S|A∗ is the grounded
extension of 〈A ∗,R|A ∗〉.

It is easy to see the three remaining implications needed to prove these five
statements equivalent: Every stable set is preferred, every grounded set is com-
plete, and every complete set is admissible. This completes the proof. �

We now strengthen the NP-hardness lower bound for pr-ArgIncPV given
in Theorem 2 to DP-hardness. The following lemma due to Wagner [32] gives a
sufficient condition for proving hardness for DP.

Lemma 2 (Wagner [32]). Let A be some NP-hard problem, and let B be any
set. If there exists a polynomial-time computable function f such that, for any
two instances z1 and z2 of A for which z2 ∈ A implies z1 ∈ A, we have

(z1 ∈ A and z2 /∈ A) ⇐⇒ f(z1, z2) ∈ B,

then B is DP-hard.

Theorem 3. pr-ArgIncPV is DP-hard.

Proof. We will use Wagner’s lemma to show DP-hardness: Let pr-ArgIncPV
be the set B from Wagner’s lemma, and let X3C be the NP-complete problem
A in that lemma. Let z1 and z2 be two instances of X3C such that z2 ∈ X3C
implies z1 ∈ X3C. We construct an instance (〈A ′,A ,R〉, S) of pr-ArgIncPV
as follows:

– Construct an instance (〈A ′
1 ,A1,R1〉, S1) from the X3C instance z1 exactly

as in the proof of Theorem 1.
– The construction of an instance (〈A ′

2 ,A2,R2〉, S2) from the X3C instance
z2, however, is obtained as the composition of two reductions: Since pr-
Verification is coNP-complete and X3C is NP-complete, there exists a
reduction f such that z2 /∈ X3C if and only if f(z2) ∈ pr-Verification.
Now, letting g be the reduction from Proposition 2, we have z2 /∈ X3C if and
only if g(f(z2)) ∈ pr-ArgIncPV.

– Given two instances of pr-ArgIncPV, (〈A ′
1 ,A1,R1〉, S1) and

(〈A ′
2 ,A2,R2〉, S2), let (〈A ′,A ,R〉, S) = (〈A ′

1∪A ′
2 ,A1∪A2,R1∪R2〉, S1∪S2)

if A1∩A2 = ∅ (otherwise, simply rename the elements in one instance). Hence,
this new instance consists of two disconnected argument-incomplete argumen-
tation frameworks.

This completes the reduction. We claim that (z1 ∈ X3C and z2 /∈ X3C) if
and only if (〈A ′,A ,R〉, S) ∈ pr-ArgIncPV.

(=⇒) If z1 ∈ X3C and z2 /∈ X3C, then (〈A ′
1 ,A1,R1〉, S1) and

(〈A ′
2 ,A2,R2〉, S2) both are yes-instances of pr-ArgIncPV. Thus we must have

a completion for the first and a completion for the second argument-incomplete
argumentation framework such that S1 restricted to the arguments in this first
completion and S2 restricted to the arguments in the second completion are pre-
ferred in their respective completion. But then, using the same completions for
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each part of 〈A ′,A ,R〉, we have that S restricted to those arguments must be
preferred in this argumentation framework. This is true because no new attacks
are introduced in 〈A ′,A ,R〉 and, therefore, neither are any new conflicts added
nor do the elements of S have to be defended by any other arguments than
before. Hence, (〈A ′,A ,R〉, S) is a yes-instance of pr-ArgIncPV.

(⇐=) Conversely, assume that (〈A ′,A ,R〉, S) is a yes-instance of pr-
ArgIncPV, and assume further that (〈A ′

i ,Ai,Ri〉, Si) is a no-instance of pr-
ArgIncPV for some i ∈ {1, 2}. Then there is no completion 〈A ∗

i ,Ri|A ∗
i
〉 of

〈A ′
i ,Ai,Ri〉 such that Si|A ∗

i
is preferred in it. That means that for every com-

pletion 〈A ∗
i ,Ri|A ∗

i
〉, Si|A ∗

i
either is not conflict-free, or is not admissible, or that

there exists a superset of Si|A ∗
i

in 〈A ∗
i ,Ri|A ∗

i
〉 that is admissible. We consider

these cases separately:

1. If Si|A ∗
i

is not conflict-free in 〈A ∗
i ,Ri|A ∗

i
〉, this conflict also exists in S|A ∗

for any completion 〈A ∗,R|A ∗〉 of 〈A ′,A ,R〉 with A ∗ ∩ Ai = A ∗
i .

2. If Si|A ∗
i

is not admissible in 〈A ∗
i ,Ri|A ∗

i
〉, there must be an undefended

attack. However, by the same argument as above, this attack is still unde-
fended in any completion 〈A ∗,R|A ∗〉 of 〈A ′,A ,R〉 with A ∗ ∩ Ai = A ∗

i .
3. If there is a superset of Si|A ∗

i
preventing it from being preferred in

〈A ∗
i ,Ri|A ∗

i
〉, this superset translates into a superset of S|A ∗ for any com-

pletion 〈A ∗,R|A ∗〉 of 〈A ′,A ,R〉 with A ∗ ∩Ai = A ∗
i , thus also preventing

S|A ∗ from being preferred in 〈A ∗,R|A ∗〉.
Hence, none of these cases can happen, because (〈A ′,A ,R〉, S) is a yes-

instance of pr-ArgIncPV. But this means that Si|A ∗
i

is a preferred extension
of a completion 〈A ∗

i ,Ri|A ∗
i
〉 of 〈A ′

i ,Ai,Ri〉, a contradiction. �

4 Conclusions and Open Questions

We have analyzed a setting for argumentation frameworks in which only a sub-
set of all arguments is currently known to be part of the discussion. To this
end, we have introduced a formal model for argument-incomplete argumentation
frameworks including adaptions of the criteria of conflict-freeness, admissibility,
preferredness, stability, completeness, and groundedness. These adaptions were
defined by means of the notions of possibility and necessity. On this basis, we
adapted the decision problem s-Verification and defined two variants, namely
s-ArgIncPV and s-sArgIncNV, that fit our model.

Table 1 summarizes already known results for the s-Verification prob-
lem due to Dung [18], Dunne and Wooldridge [19], and Dimopoulos and
Torres [16], as well as our results. In contrast to the results of s-Verification,
s-ArgIncPV is hard to decide in all cases, except for the trivial property
conflict-freeness. Besides the straightforward results for conflict-freeness and pre-
ferredness, the exact complexity of s-ArgIncNV remains open, as well as that
of pr-ArgIncPV.

As a future task, we propose to investigate other decision problems, e.g.,
Credulous-Acceptance, Skeptical-Acceptance, Existence, and Non-
emptiness, adapt their notion to fit our model, and analyze their complexity.
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Table 1. Overview of complexity results both in the standard model (s-Verification)
and in the argument-incomplete model of this paper (s-ArgIncPV and s-ArgIncNV)

s Verification ArgIncPV ArgIncNV

cf in P in P (Lemma 1) in P (Lemma 1)

ad in P NP-complete (Theorem 1) in coNP (Lemma 1)

st in P NP-complete (Theorem 2) in coNP (Lemma 1)

cp in P NP-complete (Theorem 2) in coNP (Lemma 1)

gr in P NP-complete (Theorem 2) in coNP (Lemma 1)

pr coNP-complete DP-hard (Theorem 3), in Σp
2

(Lemma 1)
coNP-complete

(Lemma 2)

On the other hand, it would be interesting to generalize other semantics (e.g.,
the ideal, semi-stable, or prudent semantics [19]) in the context of argument-in-
complete argumentation frameworks.
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