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a b s t r a c t

Endriss et al. (2012) initiated the complexity-theoretic study of problems related to judgment aggrega-
tion. We extend their results on the manipulation of two specific judgment aggregation procedures to a
whole class of such procedures, namely to uniform premise-based quota rules. In addition, we consider
incomplete judgment sets and the notions of top-respecting and closeness-respecting preferences intro-
duced by Dietrich and List (2007). This complements previous work on the complexity of manipulation
in judgment aggregation that focused on Hamming-distance-respecting preferences only, which we also
study here. Furthermore, inspired by work on bribery in voting (Faliszewski and Rothe, in press), we in-
troduce and study the closely related issue of bribery in judgment aggregation.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Judgment Aggregation is the task of aggregating individual
judgment sets of possibly interconnected logical propositions (see
the surveys by List and Puppe (2009) and List (2012), and the
book chapter by Endriss (in press)) and can therefore be seen as
an important framework for collective decision making. Decision-
making processes are often susceptible to various types of inter-
ference, be it internal or external. In social choice theory and in
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computational social choice, ways of influencing the outcome of
elections – such as manipulation and bribery – have been stud-
ied intensely, with a particular focus on the complexity of the
related problems. In particular, (coalitional) manipulation refers
to (a group of) strategic voters casting their votes insincerely to
reach their desired outcome. In bribery (see, e.g., Faliszewski et al.,
2009a,b and the book chapter by Faliszewski and Rothe, in press)
an external agent seeks to reach her desired outcome by bribing –
within a given budget – some voters to alter their votes. Strategic
behavior has been studied to a far lesser extent in judgment aggre-
gation than in voting so far.

Mechanisms for collective decision making that are suscepti-
ble to strategic behavior, be it from the agents involved as in ma-
nipulation or from external authorities or actors as in bribery, are
obviously not desirable, as that undermines the trust we have in
them. We therefore have a strong interest in accurately assessing
how vulnerable a mechanism for collective decision making is to
these internal or external influences. Unfortunately, in many con-
crete settings of social choice, ‘‘perfect’’ mechanisms do not ex-
ist. For example, the Gibbard–Satterthwaite theorem says that no
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reasonable voting system can be ‘‘strategy-proof’’ (Gibbard, 1973;
Satterthwaite, 1975) (see also the generalization by Duggan and
Schwartz, 2000), and Dietrich and List (2007a) give an analogue of
the Gibbard–Satterthwaite theorem in judgment aggregation.

To avoid this obstacle, a common approach in computational
social choice is to apply methods from theoretical computer sci-
ence to show that undesirable strategic behavior is blocked, or at
least hindered, by the corresponding task being a computationally
intractable problem.While this approach evidentlymakes sense in
voting, one may wonder whether it is also applicable to judgment
aggregation scenarios. After all, these scenarios originate from and
are motivated by juridical issues in court proceedings (Kornhauser
and Sager, 1986)where usually only a few judges collectivelymake
decisions. However, there are also large-scale examples of real-
world judgment aggregation scenarios. Suppose that a community
is going tomake a decision onwhether or not to build a new prison
and that all citizens are invited to participate in this decision mak-
ing via an online platform.1 After discussing the pros and cons,
the question boils down to their judgment of the following two
propositions: (A) The community’s income from municipal taxes
is large enough to afford building a prison, and (B) the crime rate
in the community has raised so much that this indeed is needed.
The prison will be built if both (A) and (B) are affirmed by the cit-
izens. This example is very similar to other examples motivating
judgment aggregation (see, e.g., Example 1 in Section 2 on a deci-
sion by three judges in a soccermatch), but its point is that it can be
realistic to have a large number of judges, and it therefore makes
sense to apply computational complexity also to judgment aggre-
gation problems. Besides these examples judgment aggregation is
also used in artificial intelligence, notably as a tool for collective
decision making in systems with interacting autonomous agents,
which alsomay involve a very large number of participating judges.
For further applications of judgment aggregation in computer sci-
ence, see the book chapter by Endriss (in press).

1.1. Our contributions

As mentioned above, much work on the complexity of manip-
ulation and bribery problems has been done in voting, but only
a few results are known for these problems in judgment aggre-
gation. Most notably, Endriss et al. (2012) recently initiated the
algorithmic and complexity-theoretic study of the winner deter-
mination problem and the manipulation problem in judgment ag-
gregation, and we here extend their work for manipulation to
the class of uniform premise-based quota rules and to other no-
tions of preference that have been introduced by Dietrich and List
(2007a). In particular, we will study incomplete judgment sets and
top-respecting and closeness-respecting preferences in addition to
Hamming-distance-respecting preferences. We also introduce ex-
act variants of manipulation where the manipulator’s goal is to
achieve not only a better, but a best outcome for a given subset of
her desired set. This gives rise to a number of manipulation prob-
lems for each judgment aggregation rule, which is why we here

1 Implementing real-world, large-scale judgment aggregation scenarios such as
this one on an online platform is not fictitious. For example, the interdisciplinary
graduate college ‘‘Online Partizipation’’ (www.fortschrittskolleg.de) of HHU
Düsseldorf and other institutions (including as practice partners registered societies
such as Liquid Democracy e.V., limited liability companies such as Zebralog GmbH
& Co KG and polidia GmbH as well as the municipal councils of Bonn, Köln, and
Münster, among others) investigates such settings to explore the technical, societal,
economical, and juridical aspects of a self-organizing society. A central goal in this
project, which is funded by theNRWMinistry for Innovation, Science, and Research,
is to build an internet platform (www.normsetting.org) that can be used for online
discussions and deliberations, and hundreds of participants have been involved in
previous pilot projects.
focus on only one class of such rules, the uniform premise-based
quota rules. Extending this work to other judgment aggregation
rules (such as those mentioned in Section 1.2 below), to allow a
comparison of these rules in terms of their resistance to manipu-
lation, is left for future work.

A main result of this paper is presented in Theorem 10, which
says that for each rational quota and for any fixed number of at
least three judges, the uniform premise-based quota rule is hard
to manipulate for Hamming-distance-respecting preferences in
terms of the parameterized complexity classW[2] (see Section 2.2)
when parameterized by the maximum number of changes in the
premises needed in the manipulator’s desired set. We also provide
many complexity results for manipulation with respect to top-
respecting and closeness-respecting preferences (see Table 6 in
Section 5 for an overview).

In addition, we here initiate the algorithmic and complexity-
theoretic study of bribery problems in judgment aggregation.
Again, these problems are each closely related to the correspond-
ing bribery problems in voting, yet are specifically tailored to judg-
ment aggregation scenarios. Table 7 in Section 5 gives an overview
of our results on the complexity of bribery problems for judgment
aggregation with the premise-based procedure.

This paper combines and extends previous work by Baumeister
et al. (2011, 2012, 2013, 2014b) that appeared in the proceedings of
ADT’11, COMSOC’12, ADT’13, and COMSOC’14. The present version
contains some additional results and it provides more discussion
and a number of notational improvements.

1.2. Related work

Manipulation and bribery are two forms of strategic actions that
have been studied extensively in voting (see the references below),
yet much less so in judgment aggregation. Endriss et al. (2012)
were the first to studymanipulation in judgment aggregation from
a computational point of view, and we here extend their work as
described in Section 1.1. In voting theory, another way of tamper-
ing with elections is control, and Baumeister et al. (2013, 2012)
have studied certain types of control in judgment aggregation
where an external agent seeks to influence the outcome by altering
the structure of the judgment aggregationprocess by adding, delet-
ing, or replacing judges. Dietrich (2014) studied the agenda ma-
nipulation problem, where one tries to influence the outcome by
carefully choosing the formulas in the agenda. In the case of se-
quential judgment aggregation procedures, the order of the for-
mulas in the agenda is important and may give the opportunity
to rule manipulation, see the work of List (2004) and Dietrich and
List (2007b).

For our complexity-theoretic analysis of manipulation and
bribery in judgment aggregation, we will focus on the uniform
premise-based quota rules (see Section 2.1 for a formal definition).
In these rules, the agenda is divided into premises and conclusions,
the outcome for each of the premises is determined by a given
quota (just one – a uniform quota assigned to each of the premises),
and the outcome for each conclusion is then derived from the out-
come for the premises in a consistent way. That is, under a uniform
premise-based quota rule we collectively accept those conclusions
that logically follow from the premises we collectively accept ac-
cording to the given quota. By contrast, in conclusion-based proce-
dures (see, e.g., Kornhauser and Sager, 1986; List and Pettit, 2002;
Dietrich, 2006), the collective decision is made for the conclu-
sions of the agenda only. Another approach are the distance-based
procedures (see the work of Miller and Osherson, 2009) where a
collective outcome minimizes the distance (according to a cer-
tain predetermined metric) to the given individual judgment sets.
Lang et al. (2011) define and study judgment aggregation pro-
cedures based on minimization, which are inspired by voting

http://www.fortschrittskolleg.de
http://www.normsetting.org
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theory and knowledge representation. In a sequential procedure
(List, 2004), the formulas of the agenda are considered in somepre-
defined order, and then some rule (e.g., themajority rule) is applied
to achieve a consistent outcome. In voting theory, the well-known
Condorcet principle requires that an election is won by a candi-
date that beats all other candidates in a pairwise comparison. Simi-
larly, judgment aggregation procedures based on the Condorcet set
have been proposed by Nehring et al. (2014). Everaere et al. (2014)
propose judgment aggregation procedures that are based on the
support (i.e., number of votes) that each member of the agenda
receives.

Bartholdi et al. (1989) and Bartholdi and Orlin (1991) were the
first to study the complexity of manipulation problems in voting,
and Conitzer et al. (2007) extended their model to also study
coalitional manipulation in weighted elections. Since then, much
work has been done to classify a variety of manipulation problems
for many voting rules in terms of their complexity, see, e.g., the
recent surveys and book chapters by Faliszewski and Procaccia
(2010), Faliszewski et al. (2010), Faliszewski and Rothe (in press),
Conitzer andWalsh (in press), Brandt et al. (2012), and Baumeister
et al. (2010).

Bribery in the context of voting has been introduced and studied
in depth by Faliszewski et al. (2009a), and variants of bribery prob-
lems have been investigated, for example, by Elkind et al. (2009)
and Faliszewski et al. (2009b, in press) (see, e.g., the survey by Fal-
iszewski and Rothe, in press for an overview andmanymore refer-
ences). In particular, Christian et al. (2007) (see also, e.g., Bredereck
et al., 2012; Binkele-Raible et al., 2014) studied the related problem
of optimal lobbying, which may be seen as a simplified variant of
judgment aggregation. We will apply their hardness result for op-
timal lobbying in the proof of Theorem 17 in Section 4 when we
will be concerned with bribery in judgment aggregation.

1.3. Organization

This paper is organized as follows. In Section 2 we provide the
basic framework of judgment aggregation and define the relevant
notions formally, and we provide some background from com-
plexity theory. In Section 3 we study the complexity of manip-
ulation in judgment aggregation for premise-based quota rules,
and in Section 4 that of bribery in judgment aggregation for the
premise-based procedure. Finally, Section 5 summarizes our re-
sults and presents a number of interesting open problems for fu-
ture research.

2. Preliminaries

In this section, we present the formal framework of judgment
aggregation and provide some background on complexity theory.

2.1. Formal framework of judgment aggregation

We adopt the judgment aggregation framework described by
Endriss et al. (2012) (see also their previous conference papers by
Endriss et al., 2010a,b). Let PS be the set of all propositional vari-
ables and letLPS be the set of propositional formulas built from PS,
where the following connections can be used in their usual mean-
ing: disjunction (∨), conjunction (∧), implication (→), equiva-
lence (↔), and the boolean constants 1 and 0. To avoid double
negations, let α denote the complement of α, i.e., α = ¬α if α is
not negated, and α = β if α = ¬β . The judges have to judge over
all formulas in the agendaΦ , which is a finite, nonempty subset of
LPS without doubly negated formulas. The agenda is required to be
closed under complementation, i.e., α ∈ Φ if α ∈ Φ .

A judgment set for an agenda Φ is a subset J ⊆ Φ . It is said to
be an individual judgment set if it is the set of propositions in the
agenda accepted by an individual judge. A collective judgment set is
the set of formulas in the agenda accepted by the collective as the
result of a judgment aggregation procedure. A judgment set J is

• complete if for all α ∈ Φ, α ∈ J or α ∈ J;
• complement-free if for no α ∈ Φ, α ∈ J and α ∈ J;
• consistent if there is an assignment that makes all formulas in J

true;
• rational if it is complete and consistent.

If a judgment set is rational, it is obviously complement-free. We
denote the set of all rational judgment sets inΦ by J(Φ).

A judgment aggregation procedure is a function F : J(Φ)n →

2Φ that maps a profile of n individual rational judgment sets to
one collective judgment set. We will call a procedure complete
(complement-free, consistent, rational) if the collective judgment set
is always complete (complement-free, consistent, rational).

The famous doctrinal paradox (Kornhauser and Sager, 1986) in
judgment aggregation says that if the majority rule is used, the
collective judgment set can be inconsistent even if all individual
judgment sets are consistent. One way of circumventing the
doctrinal paradox is to impose restrictions on the agenda.2 For
example, the premise-based judgment aggregation procedure
preserves consistency (and thus avoids the doctrinal paradox) by
first applying the majority rule individually to the premises, and
then logically deriving the result for the conclusions from the result
of the premises.

Example 1. Consider, for example, a controversial penalty situa-
tion in a soccer match with three referees having different views
of the situation. According to the rules, a team must get a penalty
if they have been fouled in the penalty area. The first referee says
that there was a foul in the penalty area; the second referee says
that what he observed in the penalty area in fact was a dive, not a
foul, so there is no penalty; and the third one denies a penalty as
well, since he has seen a foul outside the penalty area. The three
different individual judgments and the evaluation according to the
majority rule are shown in Table 1(a), where a 1 stands for ‘‘yes’’
and a 0 for ‘‘no.’’

Applying the majority rule here leads to the inconsistent
outcome that there was a foul in the penalty area, but there is
no penalty. By contrast, this can be avoided by using the premise-
based procedure (see Table 1(b)).

Endriss et al. (2012) introduced and studied the winner and
the manipulation problem for two specific judgment aggregation
procedures that always guarantee consistent outcomes: the
premise-based procedure and the distance-based procedure. We
will study the complexity of manipulation and bribery also for the
class of uniform premise-based quota rules, which were defined in
a more general way by Dietrich and List (2007b).

Definition 2 (Uniform Premise-based Quota Rule). The agenda Φ
is divided into two disjoint subsets Φ = Φp ⊎ Φc , where Φp is
the set of premises and Φc is the set of conclusions. We assume
bothΦp andΦc to be closed under complementation. The premises
Φp are again divided into two disjoint subsets, Φp = Φ1 ⊎ Φ2,
such that Φ1 and Φ2 each contain exactly one member of each
pair {ϕ, ϕ} ⊆ Φp. Assign the quota q ∈ Q, 0 ≤ q < 1, to each
literal ϕ ∈ Φ1. The quota for each literal ϕ ∈ Φ2 is then derived
by q′

= 1 − q. Let |S| denote the cardinality of set S and |H the
satisfaction relation. A uniform premise-based quota rule is defined

2 Endriss et al. (2012, 2010b) studied the question of whether one can guarantee
for a specific agenda that the outcome is always rational. They established necessary
and sufficient conditions on the agenda to satisfy these criteria, and they studied
the complexity of deciding whether a given agenda satisfies these conditions. They
also showed that deciding whether an agenda guarantees a rational outcome for
the majority rule is an intractable problem.
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Table 1
Example illustrating the doctrinal paradox and how to prevent it by the premise-based procedure.

(a) Doctrinal paradox with the majority rule (b) Avoiding it with the premise-based procedure
Penalty area Foul Penalty Penalty area Foul Penalty

Referee 1 1 1 1 Referee 1 1 1 1
Referee 2 1 0 0 Referee 2 1 0 0
Referee 3 0 1 0 Referee 3 0 1 0

Majority 1 1 0 PBP 1 1 ⇒ 1
to be a function UPQRq : J(Φ)n → 2Φ such that, forΦ = Φp ⊎Φc ,
each profile J = (J1, . . . , Jn) of individual judgment sets is mapped
to the collective judgment set

UPQRq(J) = △ ∪ {ψ ∈ Φc | △ |H ψ}, where

△ = {ϕ ∈ Φ1 | |{i | ϕ ∈ Ji}| > nq}
∪{ϕ ∈ Φ2 | |{i | ϕ ∈ Ji}| ≥ nq′

}.

To guarantee rational outcomes for this procedure, it is enough
to require that Φ is closed under propositional variables and that
Φp consists of all literals. Note that this implies that all premises
are independent. To be contained in the collective judgment set, a
literal ϕ ∈ Φ1 needs to be in ⌊nq + 1⌋ individual judgment sets,
and a literal ϕ ∈ Φ2 in ⌈nq′

⌉ individual judgment sets. Note that
⌊nq + 1⌋ + ⌈nq′

⌉ = n + 1 ensures that either ψ ∈ UPQRq(J) or
ψ ∈ UPQRq(J) for every ψ ∈ Φ . Note further that the quota q = 1
for a variable ϕ ∈ Φ1 is not allowed here, as n + 1 judges having
it in the collective judgment set were then needed for ϕ ∈ Φ1 to
be in the collective judgment set, which is impossible. However,
q = 0 is allowed, as in that case ϕ ∈ Φ1 needs to be in at least one
individual judgment set and ϕ ∈ Φ2 needs to be in n individual
judgment sets, which is possible. For q = 1/2 and the case of an odd
number of judges, we obtain the premise-based procedure defined
by Endriss et al. (2012), and we will denote it by PBP .

2.2. Background on complexity theory

We assume that the reader is familiar with the basic concepts
of complexity theory, with complexity classes such as P and NP,
and the notions of hardness and completeness with respect to
the polynomial-time many-one reducibility (denoted by ≤

p
m); see,

e.g., the textbooks (Papadimitriou, 1995; Rothe, 2005). Downey
and Fellows (1999) (see also the textbooks by Flum and Grohe,
2006; Niedermeier, 2006) introduced parameterized complexity
theory; in their framework it is possible to do a more fine-grained
multi-dimensional complexity analysis. In particular, NP-complete
problemsmay be easy (i.e., fixed-parameter tractable)with respect
to certain parameters confining the seemingly unavoidable com-
binatorial explosion. If this parameter is reasonably small, a fixed-
parameter tractable problem can be solved efficiently in practice,
despite its NP-hardness. Formally, a parameterized decision prob-
lem is a set L ⊆ Σ∗

× N, whereΣ∗ is the set of all words that can
be built from the alphabet Σ . Such a problem is fixed-parameter
tractable (FPT) if there is a constant c such that for each input (x, k)
of sizem = |(x, k)| we can determine in time O(f (k) ·mc)whether
(x, k) is in L, where f is a function depending only on the parame-
ter k. The main hierarchy of parameterized complexity classes is:

FPT = W[0] ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[ℓ] ⊆ XP,

where FPT and W[1] are strong parameterized analogues of P
andNP, andXP is the class of parameterized decision problems that
can be solved in time O(mg(k)) for some function g . Detailed defi-
nitions of the classes in the W-hierarchy can be found in the book
by Downey and Fellows (1999).

We say that a parameterized problem A parameterized reduces
to a parameterized problem B if each instance (x, k) of A can be
transformed in time O(g(k) · |x|c) (for some function g and some
constant c) into an instance (x′, k′) of B such that (x, k) ∈ A if and
only if (x′, k′) ∈ B, where k′

= g(k).
In our results, we will focus on only the class W[2] (see, e.g.,

Downey and Fellows, 1999; Flum and Grohe, 2006; Niedermeier,
2006 for more background), which refers to problems that are
considered to be fixed-parameter intractable.

In order to show that a parameterizedproblem isW[2]-hard,we
will give parameterized reductions from theW[2]-complete prob-
lem k-Dominating-Set (see Downey and Fellows, 1999). To define
this problem, letG = (V , E) be an undirected graphwith vertex set
V = {v1, . . . , vn} and edge set E. Define N(vi) as the closed neigh-
borhood of vertex vi, i.e., the set of all vertices adjacent to vi and
the vertex vi itself. Then, V ′

⊆ V is a dominating set for G if and
only if N(vi)∩V ′

≠ ∅ for each i, 1 ≤ i ≤ n. The size of a dominating
set is the number of its vertices. Define the parameterized decision
problem:

k-Dominating-Set

Given: A graph G = (V , E) and a positive integer
k ≤ |V |.

Parameter: k.
Question: Is there a dominating set of size at most k in G?

When considered as an unparameterized problem (i.e., as a
plain NP-complete decision problem), we write Dominating-Set.

3. Manipulation in judgment aggregation

Recall the example from Table 1(b) illustrating how the doctri-
nal paradox can be avoided by the premise-based procedure. From
a similar example List (2006) concludes that in a premise-based
procedure the judges might have an incentive to report insincere
judgments. Suppose that in the example from Table 1(b) all soc-
cer referees are absolutely sure that they are right, so they all want
the aggregated outcome to be identical to their own conclusions. In
this case, referee 3 knows that insincerely changing her judgment
on whether there was a foul from ‘‘yes’’ to ‘‘no’’ would aggregate
with the other individual judgments on this issue to a ‘‘no’’ by ma-
jority and thus would deny the penalty in conclusion. For the same
reason, referee 2might have an incentive to give an insincere judg-
ment of the ‘‘penalty area’’ question. This is a typical manipulation
scenario. In the following section, we will discuss the interesting
issue of how to define preferences from judgments, which will be
central to how we will formalize strategy-proofness and our ma-
nipulation problems later on.

3.1. Defining preferences from judgments

Strategy-proofness and manipulation have been studied in a
wide variety of fields—such as voting (see, e.g., Gibbard, 1973;
Satterthwaite, 1975; Faliszewski and Procaccia, 2010; Conitzer and
Walsh, in press), mechanism design (see, e.g., Alon et al., 2013),
game theory (see, e.g., Takamiya, 2013), fair division (see, e.g.,
Svensson, 1999; Klaus and Miyagawa, 2013), etc. In judgment
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aggregation, manipulability and (the game-theoretic concept of)
strategy-proofness were first introduced by Dietrich and List
(2007a). We focus on their notion of strategy-proofness, since
their (non)manipulability condition is not always appropriate in
our setting. They define nonmanipulability on a given subset
of the agenda by considering every proposition in this subset
independently, whereas we will consider the subset as a whole.

The incentive of a manipulative attack is always to achieve a
‘‘better’’ result by agents (voters, players, etc.) providing untruth-
ful information. In judgment aggregation, this untruthful informa-
tion is the manipulator’s individual judgment set and the result is
the collective outcome of a judgment aggregation procedure. How-
ever, it is not at all obviouswhat a ‘‘better ’’ result is. To compare two
collective judgment sets, a preference over all possible judgment
sets would be needed, but such preferences are rarely elicited, and
the number of judgment sets may be exponentially large in the
number of formulas in the agenda. One way to avoid this obsta-
cle, is to derive an order from a given individual judgment set.
Based on the notions introduced by Dietrich and List (2007a), we
in particular consider incomplete judgment sets and the notions of
top-respecting and closeness-respecting preferences. Since most
judgment aggregation rules are not strategy-proof, we study the
computational complexity of the corresponding decision prob-
lems. This complements and continues previous work on the
complexity of manipulation in judgment aggregation, which has
been initiated by Endriss et al. (2012) that focused on Hamming-
distance-respecting preferences, which we also study here. For a
very general framework of manipulation in (both preference and
judgment) aggregation, see the work of Falik and Dokow (2012).

As mentioned above, we apply the notions introduced by
Dietrich and List (2007a) to study various types of preferences.
We will express weak preferences by weak orders, denoted by %,3
over J(Φ). As is common, for all X, Y ∈ J(Φ), define X ≻ Y by
X % Y and Y %̸ X , and define X ∼ Y by X % Y and Y % X . We say X
is weakly preferred to Y whenever X % Y , and we say X is preferred
to Y whenever X ≻ Y .

Definition 3. Let Φ be an agenda and J(Φ) the set of all rational
judgment sets in Φ . Let U be the set of all weak orders over J(Φ).
Given some (possibly incomplete) judgment set J , define

1. the set of unrestricted J-induced (weak4) preferences as the set UJ
of weak orders % in U such that for all X, Y ∈ J(Φ), X ∼ Y
whenever X ∩ J = Y ∩ J;

2. the set of top-respecting J-induced (weak) preferences as TRJ ⊆

UJ such that% ∈ TRJ if andonly if for allX ∈ J(Φ)withX∩J ≠ J ,
it holds that J ≻ X;

3. the set of closeness-respecting J-induced (weak) preferences as
CRJ ⊆ UJ such that % ∈ CRJ if and only if for all X, Y ∈ J(Φ)
with Y ∩ J ⊆ X ∩ J , we have X % Y ; and

4. the set of Hamming-distance-respecting J-induced (weak) pref-
erences as HDJ ⊆ UJ such that % ∈ HDJ if and only if for all
X, Y ∈ J(Φ), we have X % Y if and only if HD(X, J) ≤ HD(Y , J),
where the Hamming distance HD(S, T ) between two (possibly
incomplete) judgment sets S and T is the number of disagree-
ments on positive formulas that occur in both judgment sets.

Intuitively, unrestricted preferences capture the setting where
we know nothing about the individual preferences. The slightly
more restricted case of top-respecting preferences at least re-
quires the given judgment set J to be the most preferred one. This

3 A weak order is transitive and total (and thus, in particular, reflexive).
4 Weoccasionally abuse our notation by omitting to explicitly state ‘‘weak’’, using

the term preference to refer both to ‘‘weak preference’’ in the sense of % and to
‘‘preference’’ in the sense of ≻. The intended meaning will always be clear from
the context.
Table 2
Applying the premise-based judgment aggregation procedure.

a b c d a ∨ b b ∨ c a ∨ c b∨d

Judge 1 1 1 0 0 1 1 1 1
Judge 2 0 0 0 0 0 0 0 0
Judge 3 1 0 1 1 1 1 1 1

PBP 1 0 0 0 ⇒ 1 0 1 0

also holds for closeness-respecting preferences, but in addition
judgment sets that have additional agreement are preferred. The
Hamming-distance-respecting preferences, which focus on the to-
tal number of disagreements, are the most restrictive ones. Sum-
ming up, we have

HDJ ⊆ CRJ ⊆ TRJ ⊆ UJ .

Example 4. For variables a, b, c , and d, let the agenda contain the
formulas

a, b, c, d, a ∨ b, b ∨ c, a ∨ c, b ∨ d,

and their negations. The individual judgment sets of three judges
are shown in Table 2. A 0 indicates that the negation of the formula
is in the judgment set, and a 1 indicates that the formula itself is
contained in the judgment set.

The result according to the premise-based procedure is also
given in the table. Now assume that the third judge is trying to
manipulate and reports the untruthful individual judgment set
{a, b, c, d} and the corresponding conclusions. Then the collective
outcome equals the individual judgment set of the first judge.

• If the manipulator has unrestricted preferences, we do not
know whether she prefers this new outcome or not.

• If she has closeness-respecting preferences, we again do not
know whether she prefers the new outcome, since the agree-
ment on¬b is no longer given. However, if she is interested only
in the conclusions, then she does prefer the new outcome, since
the agreement on a∨ b and a∨ c is preserved and there are the
two additional agreements on b ∨ c and b ∨ d.

• The same holds for top-respecting preferences: If the manipu-
lator is interested in the whole collective judgment set, we do
not know which outcome is better for her, but restricted to the
conclusions the new outcome equals her initial individual judg-
ment set and thus is preferred to all other outcomes.

• If the manipulator has Hamming-distance-respecting prefer-
ences, we know that the new outcome is preferred to the
old one, since before the manipulation the Hamming distance
was 4, but now it is only 3.

3.2. Possible and necessary strategy-proofness and possible, neces-
sary, and exact manipulation

Konczak and Lang (2005) introduced the notions of necessary
and possible winner in voting:5 A necessary winner is a candidate
whowins for every extension of a given partial preference profile to
a complete profile, and a possible winner is a candidate who can be
made a winner by some complete extension of a given partial pref-
erence profile. Inspired by their notions,6 we now introduce the

5 For more background, we refer to the work of, e.g., Xia and Conitzer (2011),
Betzler and Dorn (2010), and Baumeister and Rothe (2012) and to the book chapters
by Boutilier and Rosenschein (in press) and Baumeister and Rothe (in press).
6 See also the remotely related notions of ‘‘necessary envy-freeness’’ versus

‘‘possible envy-freeness’’ in fair division that are due to Bouveret et al. (2010) (see
also the papers by Brams et al., 2004; Brams and King, 2005 and Baumeister et al.,
2014a).
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notions of necessary and possible strategy-proofness in judgment
aggregation.

Just as Dietrich and List (2007a), we study settings where
the desired set is incomplete, to also capture their ‘‘reason-
oriented’’ and ‘‘outcome-oriented’’ preferences. However, we will
not generally restrict the desired set to the premises or the
conclusions; rather, we allow arbitrary incomplete desired sets
(which stillmust have a consistent extension to thewhole agenda).
In this case, we restrict the preferences to the formulas that occur
in the desired set. Since we want to compare two preferences with
each other, butmost of the induced preferenceswill be incomplete,
we distinguish the cases where the relation between them is
known or unknown.

Definition 5. Let J, X , and Y be judgment sets for the same agenda
Φ , where J is possibly incomplete. Let TJ ∈ {UJ , TRJ , CRJ} be a type
of J-induced preferences.

• A judge necessarily weakly prefers X to Y for type TJ if X % Y for
all % ∈ TJ .

• A judge possibly weakly prefers X to Y for type TJ if there is some
% ∈ TJ with X % Y .

• The notions of possible/necessary preference for type TJ are
defined analogously, except with % replaced by ≻.

• A judgment aggregation rule F is necessarily/possibly strategy-
proof for induced weak preferences of type T ∈ {U, TR, CR} if for
all profiles (J1, . . . , Jn), for each i, 1 ≤ i ≤ n, and for each J∗i ∈

J(Φ), judge i necessarily/possibly weakly prefers the outcome
F(J1, . . . , Jn) to the outcome F(J1, . . . , Ji−1, J∗i , Ji+1, . . . , Jn) for
type TJi .

The stronger notion of necessary strategy-proofness corresponds
to the ‘‘strategy-proofness’’ condition defined by Dietrich and List
(2007a),whereas theweaker notion of possible strategy-proofness is
introduced here. Note that since the Hamming distance-respecting
weak preferences are a complete relation, we simply say that F is
strategy-proof (for Hamming-distance-respecting weak preferences)
if for each individual judge the actual outcome is at least as good
as all outcomes obtained by reporting a different individual judg-
ment set.

In our notation, a result of Dietrich and List (2007a) says that
an aggregation rule is necessarily strategy-proof for closeness-
respecting preferences if and only if it is independent and
monotonic. Independence means that the collective decision on
each formula only relies on the individual judgments of this
proposition. Since UPQRq derives the outcome for the conclusions
from the outcome of the premises, it is not independent and hence
not necessarily strategy-proof for closeness-respecting weak
preferences. An aggregation function is monotonic if additional
support for some formula that is currently accepted may never
result in a nonacceptance for this formula, provided everything
else remains unchanged. In the case where the agenda contains
solely premises, UPQRq is independent and monotonic, and hence
necessarily strategy-proof.

Define the relatedmanipulation problems for uniformpremise-
based quota rules and a given preference type T .7

7 We define our manipulation and bribery problems as decision problems as
is most common in complexity theory. It would also be interesting to study
the search version of these problems that, instead of just deciding whether a
manipulative action is possible, actually compute such an action. Note that the
decision version of a problem straightforwardly reduces to its search version, and
since most of our results are about hardness for decision, the search version is hard
as well. Interestingly, Hemaspaandra et al. (2013) studied search versus decision
for manipulation in voting and found cases where, under plausible assumptions, it
is easy to decide whether manipulation is possible, yet hard to actually compute a
successful manipulation.
UPQRq-T -Necessary-Manipulation

Given: An agendaΦ , a profile J = (J1, . . . , Jn) ∈ J(Φ)n,
and the manipulator’s desired consistent
(possibly incomplete) set J ⊆ Jn.

Question: Does there exist a judgment set J∗ ∈ J(Φ) such
that UPQRq(J1, . . . , Jn−1, J∗) ≻ UPQRq(J1, . . . , Jn)
for all % ∈ TJ?

In UPQRq-T -Possible-Manipulation, we for the same input ask
whether there exists a judgment set J∗ ∈ J(Φ) such that

UPQRq(J1, . . . , Jn−1, J∗) ≻ UPQRq(J1, . . . , Jn)

for some % ∈ TJ . In the case of Hamming-distance-respecting pref-
erences wewill simply say UPQRq-HD-Manipulation, since the re-
lation between two given judgment sets is always known.

Furthermore, we introduce and study the exact variant, UPQRq-
Exact-Manipulation, where the manipulator seeks to achieve not
only a better, but a best outcome for a given subset of her desired
set. Here, the question is whether there is some judgment set J∗ ∈

J(Φ) such that

J ⊆ UPQRq(J1, . . . , Jn−1, J∗).

3.3. Results

We start by showing that exact manipulation is hard to achieve
for uniform premise-based quota rules.

Theorem 6. For each rational quota q, 0 ≤ q < 1, UPQRq-Exact-
Manipulation is NP-complete, for every fixed number n ≥ 3 of
judges.

Proof. We will only present the proof for q = 1/2; the remaining
cases can be shown by slightly adapting this proof.

The proof for q = 1/2 is by a reduction from the NP-complete
satisfiability problem. Let ϕ be a given formula in conjunctive
normal form,where the clauses are built from the set A = {α1, . . . ,
αm} of variables. The question is whether there is a satisfying
assignment for this formula. Without loss of generality, we may
assume that neither setting all variables to true, nor setting all
variables to false is a satisfying assignment for ϕ. Now construct
an agendaΦ that consists of the variables in A and their negations,
an additional variableβ and its negation, and the formulaϕ∨β and
its negation. The profile J = (J1, J2, J3) consists of three individual
judgment sets. The first one, J1, contains A, ¬β , and ¬(ϕ ∨ β),
and the second one, J2, contains ¬αi for each i, 1 ≤ i ≤ m,¬β ,
and ¬(ϕ ∨ β). The third judge is the manipulative one and her
individual judgment set, J3, contains A, β , and (ϕ∨β). Her desired
outcome consists of the conclusion ϕ ∨ β only. It holds that

UPQR1/2(J) = A ∪ {¬β} ∪ {¬(ϕ ∨ β)}.

Note also that the third judge is decisive for every formula in A,
and that independently of the individual judgment set of the
manipulator, β is never contained in the collective judgment set.
Hence, the onlyway to obtain the conclusion ϕ∨β in the collective
outcome is to evaluate the formula ϕ to true. This implies that
there is a satisfying assignment for ϕ if and only if the individual
judgment set of the third judge can be modified such that ϕ ∨ β is
contained in the collective outcome. �

Next, we provide generic relations between the various manip-
ulation problems we have defined.

Theorem 7. For each uniformpremise-based quota rulewith rational
quota q, 0 ≤ q < 1, the following hold:
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1. UPQRq-Exact-Manipulation ≤
p
m UPQRq-T -Necessary-Mani-

pulation for each type T ∈ {TR, CR}.
2. UPQRq-Exact-Manipulation ≤

p
m UPQRq-T -Possible-Manipu-

lation for each type T ∈ {U, TR, CR}.
3. UPQRq-Exact-Manipulation ≤

p
m UPQRq-HD-Manipulation.

Proof. For the exact problem, we have an agenda Φ , some profile
J = (J1, . . . , Jn), and some desired set J = {α1, . . . , αm} ⊆ Jn, and
we are looking for a modified judgment set J∗n such that

J ⊆ UPQRq(J1, . . . , Jn−1, J∗n ).

In the trivial case that J ⊆ UPQRq(J), J∗n = Jn obviously fulfills
the requirement, so we can construct an arbitrary yes-instance for
the corresponding manipulation problem. We will prove all three
assertions via the same reduction, but using different arguments.

Assume that JrUPQRq(J) ≠ ∅ and consider the following prob-
lem. Fix some T ∈ {TR, CR,HD}, let the agenda Φ ′ be the union of
Φ , the formula ϕ = α1 ∧· · ·∧αm, and its negation. Let J′ ∈ J(Φ ′)n

be the consistent extensions of J. In particular, J ′n = Jn ∪{ϕ}. Let the
desired set be J ′ = {ϕ}, andwe are looking for amodified judgment
set J ′∗n such that for all/some % ∈ TJ ′ we have

UPQRq(J ′1, . . . , J
′

n−1, J
′∗

n ) ≻ UPQRq(J ′1, . . . , J
′

n−1, J
′

n).

Since J ′ consists of the single formula ϕ, there are only two dif-
ferent collective outcomes when restricted to J ′. Since ϕ ∈ J ′, it
obviously holds that ϕ ≻ ¬ϕ for % ∈ TJ ′ for all T ∈ {TR, CR,HD},
and hence there is no difference between the notions of necessary
and possible preference. In the case of unrestricted preferences and
the possible manipulation problem, we ask whether there is some
different outcome, since they all may be possibly preferred. Since
there is some J∗n with

J ⊆ UPQRq(J1, . . . , Jn−1, J∗n )

if and only if there is some J ′∗n with

ϕ ∈ UPQRq(J ′1, . . . , J
′

n−1, J
′∗

n ),

the reduction works in all cases. �

Note that this reduction requires an incomplete desired set of
themanipulator forUPQRq-T -Necessary-Manipulation,UPQRq-T -
Possible-Manipulation, and UPQRq-HD-Manipulation. Together
with Theorem 6 (and the obvious NP upper bounds of these prob-
lems), this implies NP-completeness of UPQRq-HD-Manipulation,
UPQRq-T -Necessary-Manipulation for T ∈ {TR, CR}, and UPQRq-
T -Possible-Manipulation for T ∈ {U, TR, CR} whenever the
desired set of the manipulator is incomplete. Alternatively, the
reduction given by Endriss et al. (2012) in fact shows NP-
completeness of PBP-HD-Manipulation, even if the manipulator’s
desired set is complete. By contrast, if the manipulator’s desired
set is complete, the possible manipulation problem turns out to be
easy to solve for unrestricted and top-respecting preferences.

Proposition 8. For T ∈ {U, TR} and for each rational quota q, 0 ≤

q < 1, UPQRq-T -Possible-Manipulation can be solved in polyno-
mial time if the desired set of the manipulator is complete.

Proof. This result holds, since a UPQRq-U-Possible-Manipulation
instance is positive exactly if it is possible to achieve an out-
come different from the actual one, because it may possibly be
preferred. And if the desired set of the manipulator is complete,
the conclusions can only change when there is a change in the
premises, hence there must be some premise from the desired set
for which the manipulator is decisive, i.e., the collective outcome
depends on the decision of the manipulator. For a UPQRq-TR-
Possible-Manipulation instance to be positive, it must addition-
ally be required that the desired set is not the actual outcome. �
For closeness-respecting preferences, however, possible ma-
nipulation for uniform premise-based quota rules is NP-hard, even
if the desired set of the manipulator is complete.

Proposition 9 (See Selker, 2014). For each rational quota q, 0 ≤

q < 1, UPQRq-CR-Possible-Manipulation is NP-complete, even if
the manipulator’s desired set is complete.

Proposition 9 is due to Selker (2014), and the idea is to modify
the reduction from the proof of Theorem 2 in the paper by Endriss
et al. (2010a) towork for an arbitrary rational value of q, 0 ≤ q < 1.
Every outcome that is possibly preferred to the actual outcome
with respect to closeness-respecting preferences must have at
least one additional agreement with the manipulator’s desired set.
In this modified reduction, the conclusion is the only possibility
to obtain this agreement, and similar arguments as in the proof of
Endriss et al. (2010a) work here as well (for more details, see the
thesis by Selker, 2014).

We now consider the parameterized complexity of the manip-
ulation problem for Hamming-distance-respecting preferences.

Theorem 10. For each rational quota q, 0 ≤ q < 1, and for any
fixed number n ≥ 3 of judges, UPQRq-HD-Manipulation is W[2]-
hard when parameterized by the maximum number of changes in the
premises needed in the manipulator’s desired set.

Proof. We start by giving the details for q = 1/2 and three judges,
and later explain how this proof can be extended to capture any
other rational quota values q, 0 ≤ q < 1, and any fixed number of
judges greater than three.

The proof will be by a reduction from theW[2]-complete prob-
lem k-Dominating-Set, which was defined in Section 2.2. Given
an instance of k-Dominating-Set, a graph G = (V , E) with ver-
tex set V = {v1, . . . , vn}, we will now describe how to construct
a manipulation instance for judgment aggregation. Let the agenda
Φ contain

• the variables v1, . . . , vn, y and their negations,8

• the formula ϕi = v1i ∨ · · · ∨ v
j
i ∨ y and its negation, where

{v1i , . . . , v
j
i} is the closed neighborhood of vi, for each i, 1 ≤ i ≤

n, and
• n−1 syntactic variations of each of these formulas and its nega-

tion (which in effect means to give each formula ϕi a weight
of n),9

• the formula v1 ∨ · · · ∨ vn, its negation, and
• n2

− k − 2 syntactic variations of this formula and its nega-
tion (this can again be seen as giving this formula a weight of
n2

− k − 1).

The set of judges is N = {1, 2, 3}, with the individual judgment
sets J1, J2, and J3 (where J3 is the judgment set of the manipulative
judge), and the collective judgment set as shown in Table 3. Note
that theHamming distance between J3 and the collective judgment
set is 1 + n2.

We claim that there is an alternative judgment set for J3 that
yields a smaller Hamming distance to the collective outcome if and
only if there is a dominating set of size at most k for G. In addition,
the number of premises that differ in the new judgment set and J3
is less than k.
(⇐)Assume that there is a dominating set V ′ ofGwith |V ′

| = k.
(If |V ′

| < k, we simply add any k − |V ′
| vertices to obtain a domi-

nating set of size exactly k.) Regarding the premises, the judgment

8 We use the same identifiers v1, . . . , vn for the vertices of G and the variables in
Φ , specifying the intended meaning only if it is not clear from the context.
9 A syntactic variation of a formula can, for example, be obtained by an additional

conjunction with the constant 1.
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Table 3
Construction for the first part of the proof of Theorem 10.

Judgment set v1 · · · vn y ϕ1 · · · ϕn v1∨· · ·∨vn

J1 1 · · · 1 0 1 · · · 1 1
J2 0 · · · 0 0 0 · · · 0 0
J3 0 · · · 0 1 1 · · · 1 0

UPQR1/2 0 · · · 0 0 ⇒ 0 · · · 0 0

Table 4
Construction for the second part of the proof of Theorem 10.

Judgment set v1 · · · vn y ϕ′

1 · · · ϕ′
n v1∨· · ·∨vn

J1, . . . , Jm−1 0 · · · 0 1 0 · · · 0 0
Jm 0 · · · 0 0 1 · · · 1 0

UPQR1/2 0 · · · 0 1 ⇒ 0 · · · 0 0

set of the manipulator contains the variables vi ∈ V ′ and also the
literal y. Then the collective outcome also contains the variables
vi ∈ V ′, and since V ′ is a dominating set, each ϕi, 1 ≤ i ≤ n, evalu-
ates to true and the formula v1 ∨ · · · ∨ vn is also evaluated to true.
The Hamming distance to the original judgment set of themanipu-
lator is then k+1+(n2

−k−1) = n2. Hence, themanipulationwas
successful, and the number of entries changed in the judgment set
of the manipulator is exactly k.
(⇒) Now assume that there is a successful manipulation with

judgment set J ′. The manipulator can change only the premises
in the agenda to achieve a better outcome for her. A change for
the literal y changes nothing in the collective outcome. Hence, the
changes must be within the set {v1, . . . , vn}. Including j of the vi
to J ′ has the effect that these vi are included in the collective judg-
ment set, and that all variations of the formula v1 ∨ · · · ∨ vn and of
thoseϕi that are evaluated to true are also included in the collective
judgment set. If ℓ formulas ϕi are evaluated to true in the collective
judgment set, the Hamming distance to J3 is j + 1 + (n2

− nℓ) +

(n2
− k− 1). Since the manipulation was successful, the Hamming

distance can be at most n2. If ℓ < n, it must hold that j ≤ k − n,
which is not possible given that k ≤ n and j > 0. Hence, ℓ = n
and j = k. Then exactly k literals vi are set to true, and since this
satisfies all ϕi, they must correspond to a dominating set of size k,
concluding the proof for the quota q = 1/2 and three judges.

This proof can be adapted to work for any fixed number m ≥ 3
of judgment sets S1, . . . , Sm and for any rational value of q, with
1 ≤ mq < m. The agenda remains the same, but S1, . . . , S⌊mq⌋ are
each equal to the judgment set J1 and S⌊mq⌋+1, . . . , Sm−1 are each
equal to the judgment set J2. The judgment set Sm of the manipula-
tive judge equals the judgment set J3, and the quota is q for every
positive variable and 1−q for every negative variable. The number
of affirmations every positive formula needs to have in the collec-
tive judgment set is then ⌊mq⌋ + 1. Then the same argumentation
as above applies.

For the remaining case, where 0 ≤ mq < 1, the construction
must be slightly modified. The formulas ϕ1, . . . , ϕn are replaced
by ϕ′

i = (v1i ∧ · · · ∧ v
j
i) ∨ ¬y, where {v1i , . . . , v

j
i} = N(vi) for

each i, 1 ≤ i ≤ n, and the individual judgment sets J1, . . . , Jm are
shown as in Table 4, where Jm is the judgment set of the manipula-
tive judge. Then by similar arguments as above there is a successful
manipulation if and only if the given graph has a dominating set of
size at most k.

Since the number of premises changed by the manipulator de-
pends only on the size k of the dominating set, W[2]-hardness for
UPQRq-Manipulation holds for this parameter. �

Since the reduction in the proof of Theorem 10 is from
the NP-complete problem Dominating Set and since UPQRq-
HD-Manipulation is in NP, NP-completeness of UPQRq-HD-
Manipulation follows immediately from this proof.10

Corollary 11. For each rational quota q, 0 ≤ q < 1, and for any fixed
number n ≥ 3 of judges, UPQRq-HD-Manipulation is NP-complete.

Asmentioned above, studying the case of a fixed total number of
judges is very natural. The parameter we have considered for the
manipulation problem in Theorem 10 is the ‘‘maximum number
of changes in the premises needed in the manipulator’s judgment
set.’’ Hence, this theorem shows that the problem remains hard
even if the number of premises the manipulator can change is
bounded by a fixed constant. This is also very natural, since the
manipulator may wish to report a judgment set that is as close
as possible to her sincere judgment set, because for a completely
different judgment set it might be discovered too easily that she
was judging strategically.

The W[2]-hardness result stated in Theorem 10 implies that
there is little hope to find a polynomial-time algorithm for the
general problem, even when the number of participating judges is
fixed. In contrast, Proposition 12 below tells us that if the agenda is
simple and contains no conclusions, UPQRq is even strategy-proof,
and thus UPQRq-Manipulation trivially is in P.

Proposition 12. 1. If the agenda contains only premises and
Hamming-distance-respecting preferences are assumed, then
UPQRq, 0 ≤ q < 1, is strategy-proof.

2. If the desired set of the manipulator is complete and she tries to
exactly reach her desired outcome, then UPQRq, 0 ≤ q < 1, is
strategy-proof.

Proof. In both cases the premises are considered independently.
Let n be the number of judges. If some ϕ from the premises is
contained in the judgment set J of the manipulator, and ϕ does not
have ⌊n · q + 1⌋ (respectively, ⌈n(1 − q)⌉) affirmations without
considering J , it cannot reach the required number of affirmations
if the manipulator switches from ϕ to ϕ in her judgment set. �

Finally, we state a result on possible strategy-proofness for the
premise-based procedure. Note that this does not contradict the
results of Dietrich and List (2007a), since they impose different
conditions on nonmanipulability.

Proposition 13. If the desired set of the manipulator is complete and
top-respecting or closeness-respecting preferences are assumed, then
UPQRq, 0 ≤ q < 1, is possibly strategy-proof.
Proof. In case of possible strategy-proofness, there may be no al-
ternative outcome resulting from an untruthful individual judg-
ment set of the manipulator that is necessarily preferred to the
actual outcome. If closeness-respecting preferences are assumed,
a judgment set that is necessarily preferred to the actual collec-
tive outcome must preserve all agreements between the desired
set and the actual outcome. If top-respecting preferences are as-
sumed, a judgment set that is necessarily preferred to the actual
collective outcome must equal the manipulators individual true
judgment set.

Now consider a premise α that is contained in the collective
judgment set, but α is contained in the desired set. Obviously, it
can never be the case that the manipulator switching from α to α
would causeα to be in the collective judgment set. Hence there can
be no additional agreement among the premises. Since the desired
set is complete and the outcome for the conclusions depends solely
on the outcome of the premises, UPQRq is possibly strategy-proof
in both cases. �

10 Alternatively, NP-hardness of UPQRq-Manipulation could have been shown
by a suitable modification of the proof of Theorem 2 in the paper by Endriss
et al. (2010a). However, this modified reduction would not be appropriate to
establish W[2]-hardness (as achieved in Theorem 10), since the corresponding
parameterized version of SAT is not known to be W[2]-hard.
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Proposition 14. Assuming unrestricted preferences, UPQRq, 0 ≤

q < 1, is possibly strategy-proof.

Proof. In case of unrestricted preferences, we know nothing about
the preference of the manipulator. Hence, the actual outcome
is always possibly preferred to all outcomes that result from a
different individual judgment set of the manipulator. �

4. Bribery in judgment aggregation

We now turn to bribery in judgment aggregation. We will
show NP-completeness for ten variants of bribery problems for
judgment aggregation with the premise-based procedure and
W[2]-hardness for one variant. We will first motivate bribery in
judgment aggregation and define these problem variants and will
then present our results.

4.1. Definitions and motivation

Recall again the example from Table 1(b) illustrating how the
doctrinal paradox can be avoided by the premise-based procedure.
Suppose there is some party (such as the club of the soccer team
committing the alleged foul, or someone who bet some amount
of money on the outcome of this soccer match) interested in
influencing the referees’ decision so that no penalty is given. This
party might invest some amount of money (within a given budget)
to bribe some of the referees. For example, changing any of the
referees’ ‘‘yes’’ votes in the ‘‘penalty area’’ or ‘‘foul’’ columns of
Table 1(b) into a ‘‘no’’ would be enough to change the conclusive
‘‘yes’’ into a ‘‘no’’ under the premise-based procedure. This is a
typical bribery scenario.

Manipulation, bribery, and lobbying are usually considered to
be undesirable, and most of the recent literature on these topics is
devoted to exploring the barriers to prevent such actions in terms
of the computational complexity of the corresponding decision
problems. Here, we introduce bribery in judgment aggregation and
study its computational properties.

Define the following two problems for uniform premise-based
quota rules.

UPQRq-Bribery

Given: An agendaΦ , a profile J ∈ J(Φ)n, a consistent
(possibly incomplete) set J ⊆J ∈ J(Φ) desired by
the briber, and a positive integer k.

Question: Is it possible to change up to k individual judgment
sets in J such that for the resulting new profile J′ it
holds that HD(UPQRq(J′), J) < HD(UPQRq(J), J)?

UPQRq-Exact-Bribery

Given: An agendaΦ , a profile J ∈ J(Φ)n, a consistent
(possibly incomplete) set J ⊆J ∈ J(Φ) desired
by the briber, and a positive integer k.

Question: Is it possible to change up to k individual
judgment sets in J such that for the resulting new
profile J′ it holds that J ⊆ UPQRq(J′)?

Faliszewski et al. (2009b) introduced microbribery for voting
systems. We adopt their notion so as to apply to uniform premise-
based quote rules in judgment aggregation. In microbribery for
judgment aggregation, if the briber’s budget is k, she is not allowed
to change up to k entire judgment sets but instead can change up
to k premise entries in the given profile (the conclusions change
automatically if necessary).
UPQRq-Microbribery

Given: An agendaΦ , a profile J ∈ J(Φ)n, a consistent
(possibly incomplete) set J ⊆J ∈ J(Φ) desired by
the briber, and a positive integer k.

Question: Is it possible to change up to k premise entries in
the given individual judgment sets in J such that
for the resulting new profile J′ it holds that
HD(UPQRq(J′), J) < HD(UPQRq(J), J)?

UPQRq-Exact-Microribery

Given: An agendaΦ , a profile J ∈ J(Φ)n, a consistent
(possibly incomplete) set J ⊆J ∈ J(Φ) desired by
the briber, and a positive integer k.

Question: Is it possible to change up to k premise entries in
the individual judgment sets in J such that for the
resulting new profile J′ it holds that
J ⊆ UPQRq(J′)?

4.2. Results

We will study the complexity of various bribery problems
for the premise-based procedure PBP (i.e., UPQR1/2 with an odd
number of judges). We will establish NP-completeness for bribery,
microbribery, and exact microbribery, and a W[2]-hardness result
for exact briberywith respect to a natural parameter.We startwith
bribery.

Theorem 15. PBP-Bribery is NP-complete, even when the total
number of judges (n ≥ 3 odd) or the number of judges that can be
bribed is a fixed constant.

Proof. Membership in NP is easy to see. We will show NP-
hardness by slightly modifying the construction from the proof of
Theorem 10. We start by considering the case where the briber is
allowed to bribe exactly one judge. The notation and the agenda
from that proof remain unchanged, but the individual judgment
sets are slightly different. The first two judges remain unchanged,
but the third judge has the same judgment set as the second one,
and the desired set J is equal to J3 from the proof of Theorem 10 as
shown in Table 5.

Since the quota is 1/2, two affirmations are needed to be in
the collective judgment set. Again the briber cannot benefit from
bribing one judge to switch from¬y to y in her individual judgment
set. Hence the change must be in the set of variables {v1, . . . , vn}
from the second or the third judge. By a similar argument as in the
proof of Theorem 10, there is a successful bribery action if and only
if there is a dominating set of size at most k for the given graph.

Now we consider the case that the briber is allowed to bribe
more than one judge. If the briber is allowed to bribe k judges, we
construct an instancewith 2k+1 judges,where one judgment set is
equal to J1 and the remaining 2k individual judgment sets are equal
to J2. It is again not possible for the briber to change the entry for
y, and the briber must change the entry for any vi in the judgment
sets from k judges to obtain a different collective outcome. This
construction works by similar arguments as above. �

Next, we turn to microbribery. Here, the briber can change only
up to a fixed number of entries in the individual judgment sets.
We again prove NP-completeness when the number of judges or
the number of microbribes allowed is a fixed constant.

Theorem 16. PBP-Microbribery is NP-complete, even when the
total number of judges (n ≥ 3 odd) or the number of microbribes
allowed is a fixed constant.

Proof. The proof that PBP-Microbribery is NP-hard is similar to
the proof of Theorem 15. The agendaΦ is defined as in the proof of
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Table 5
Construction for the proof of Theorem 15.

Judgment set v1 · · · vn y ϕ1 · · · ϕn v1∨· · ·∨vn

J1 1 · · · 1 0 1 · · · 1 1
J2, J3 0 · · · 0 0 0 · · · 0 0

PBP 0 · · · 0 0 ⇒ 0 · · · 0 0

J 0 · · · 0 1 1 · · · 1 0

Theorem 10. Let c ∈ N be a fixed constant. The number of judges
is 2c + 1, where the individual judgment sets of c judges are of
type J1 and the remaining c + 1 individual judgment sets are of
type J2. The briber’s desired outcome is the judgment set J3 from
the proof of Theorem 10. The number of affirmations needed to be
in the collective judgment set is at least c + 1, and the number
of entries the briber is allowed to change is at most k. Since none
of the judges have y in their individual judgment sets, the briber
cannot change the collective outcome for y to 1. Hence all entries
that can be changed are for the variables v1, . . . , vn. Obviously,
setting the value for one vi in one of the judges of type J2 to 1 causes
vi to be in the collective judgment set and all other changes have
no effect on the collective judgment set. By similar arguments as in
the proof of Theorem 10, there is a successful microbribery action
if and only if the given graph has a dominating set of size at most
k. Since membership in NP is obvious, the proof is complete. �

The next result immediately follows from the fact thatOptimal-
Lobbying (restricted to an odd number of voters) is a special case
of PBP-Exact-Bribery. The formal definition of Optimal-Lobbying
is as follows.

Optimal-Lobbying

Given: Anm × n 0–1 matrix L (whose rows represent the
voters, whose columns represent the referenda,
and whose 0–1 entries represent No/Yes votes), a
positive integer k ≤ m, and a target
vector x ∈ {0, 1}n.

Question: Is there a choice of k rows in L such that by
changing the entries of these rows the resulting
matrix has the property that, for each
j, 1 ≤ j ≤ n, the jth column has a strict majority
of ones (respectively, zeros) if and only if the jth
entry of the target vector x of The Lobby is one
(respectively, zero)?

Christian et al. (2007) have shown that Optimal-Lobbying is
W[2]-complete when parameterized by the number k of rows The
Lobby can change, andwewill apply this in our next result on exact
bribery for the premise-based judgment aggregation procedure.

Theorem 17. PBP-Exact-Bribery is W[2]-hard when parameter-
ized by the number of judges that can be bribed.

Proof. Observe that an exact bribery instance with only premises
in the agenda and with a complete desired set J is exactly the
Optimal-Lobbying problem for an odd number of voters. Since this
problem is W[2]-complete for the parameter number of rows that
can be changed, PBP-Exact-Bribery inherits the W[2]-hardness
lower bound, where the parameter is the number of judges that
can be bribed. �

Note that the unparameterized version of this reduction also
establishes that PBP-Exact-Bribery is NP-hard; all (unparameter-
ized) problems considered here are easily seen to be in NP.

Theorem 18. PBP-Exact-Microbribery is NP-complete, even when
the total number of judges (n ≥ 3 odd) or the number of microbribes
allowed is a fixed constant.
Proof. Consider the construction in the proof of Theorem 16, and
change the agenda such that there are only n2

− 2 (instead of
n2

−k−2) syntactic variations of the formula v1∨· · ·∨vn (i.e., this
can be seen as giving a weight of n2

− 1 to this formula), and that
the desired set J is incomplete and contains all conclusions. By
similar arguments as above, a successful microbribery of k entries
is possible if and only if there is a dominating set for G of size at
most k. �

As for the manipulation problem, Theorems 15, 16 and 18
are concerned with a fixed number of judges. It turns out that
even in this case Bribery,Microbribery, and Exact-Microbribery
are NP-complete for PBP . Furthermore, we consider the case of a
fixed number of judges allowed to bribe for PBP-Bribery, the cor-
responding parameter for its exact variant, and the case where
the number of microbribes allowed is a fixed constant for PBP-
Microbribery and its exact variant. Both parameters concern the
budget of the briber. Since the briber aims at spending as little
money as possible, it is also natural to consider these cases. But
again, NP-completeness was shown even when the budget is a
fixed constant and in one caseW[2]-hardness for this parameter, so
bounding the budget does not help to solve the problem easily. Al-
though the exact microbribery problem is computationally hard in
general for the aggregation procedure PBP , there are some interest-
ing naturally restricted instances where it is computationally easy.

Theorem 19. If the desired set J is complete or if it is incomplete
but contains all of the premises or only premises, then PBP-Exact-
Microbribery is in P.

Proof. We give only an informal description of the algorithm that
computes a successful microbribery. Our algorithm takes as an
input a complete profile J, a consistent judgment set J , and a
positive integer k. For each premise in J , compute the minimum
number of entries that have to be flipped in order to make the
collective judgment on that premise equal to the desired set’s entry
on that premise. Note that this can be done in linear time, since it
is a simple counting. Let di denote the number of entries needed to
flip for premise i. If


i di ≤ k, output the entries which have to be

flipped and halt. Otherwise, output ‘‘bribery impossible’’ and halt.
Clearly, this algorithm works in polynomial time. The output

is correct, since if we need less than k flips in the premises, the
premises are evaluated exactly as they are in J , and the conclu-
sions follow automatically, since we are using a premise-based
procedure. �

5. Conclusions and open questions

We have studied the complexity of problems related to
manipulation and bribery in judgment aggregation for the uniform
premise-based quota rules. In particular, for manipulation, we
have extended the results of Endriss et al. (2012) from two specific
judgment aggregation procedures to the class of uniform premise-
based quota rules. Moreover, our results also apply to incomplete
judgment sets and the notions of top-respecting and closeness-
respecting preferences that are due to Dietrich and List (2007a).

Table 6 gives an overview of our results for manipulation
problems with uniform premise-based quota rules. In this table,
‘‘DS’’ stands for ‘‘desired set’’ and ‘‘NP-c’’ for ‘‘NP-complete.’’

We have introduced and studied the notions of necessary and
possible strategy-proofness in judgment aggregation, which are
inspired by the notions of necessary and possible winner in voting
(see the work of Konczak and Lang, 2005; Xia and Conitzer, 2011).
Note that distinguishing between these notions does not apply to
the exact problem variants, nor to manipulation problems based
on Hamming-distance-respecting preferences.
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Table 6
Overview of results for manipulation problems with uniform premise-based quota rules.

U TR CR HD Exact

Possible-Manipulation for incomplete DS NP-c NP-c NP-c NP-c NP-cNecessary-Manipulation for incomplete DS Possibly strategy-proof NP-c NP-c

Possible-Manipulation for complete DS in P in P NP-c (Selker, 2014) NP-ca Strategy-proofNecessary-Manipulation for complete DS Possibly strategy-proof Possibly strategy-proof Possibly strategy-proof
a This result is due to Endriss et al. (2012) for the special case of the premise-based procedure.
Table 7
Overview of results for bribery problems with the premise-based procedure.

Problem Type General
problem

# of
judges

# of bribes # of
microbribes

Bribery NP-c NP-c NP-c ✗

Exact-Bribery NP-c ? W[2]-hard ✗

Microbribery NP-c NP-c ✗ NP-c
Exact-Microbribery NP-c NP-c ✗ NP-c

Inspired by previous work on bribery in voting (see, e.g., Fal-
iszewski et al., 2009a; Elkind et al., 2009; Faliszewski et al., 2009b;
Faliszewski and Rothe, in press), we have introduced the notion
of bribery in judgment aggregation. For the premise-based proce-
dure, we have studied the complexity of bribery and microbribery
problems, both in the exact variant (where the briber’s goal is to
have exactly the desired set occur in the collective judgment set)
and in the variant where the briber simply seeks to reach a col-
lective judgment set that is closer to the desired set in terms of
their Hamming distance. Our results, stated in Table 7, show that
these problems are intractable in general, and even when certain
parameters – the number of judges, bribes, or microbribes – are
fixed. Note that ✗ in Table 7 indicates that the corresponding prob-
lem/parameter pair is not compatible. Only one case remains open:
What is the complexity of exact bribery with the premise-based
procedure for a fixed number of judges? Also, it would be inter-
esting to study bribery for other (classes of) judgment aggregation
procedures, such as conclusion-based procedures (Kornhauser and
Sager, 1986; List and Pettit, 2002; Dietrich, 2006), distance-based
procedures (Miller and Osherson, 2009), procedures based onmin-
imization (Lang et al., 2011), sequential procedures (List, 2004),
procedures based on the Condorcet set (Nehring et al., 2014), or
procedures based on the number of votes (Everaere et al., 2014).
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