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ABSTRACT
Most work on manipulation assumes that all preferences are
known to the manipulators. However, in many settings elec-
tions are open and sequential, and manipulators may know
the already cast votes but may not know the future votes.
We introduce a framework, in which manipulators can see
the past votes but not the future ones, to model online coali-
tional manipulation of sequential elections, and we show that
in this setting manipulation can be extremely complex even
for election systems with simple winner problems. Yet we
also show that for some of the most important election sys-
tems such manipulation is simple in certain settings. This
suggests that when using sequential voting, one should pay
great attention to the details of the setting in choosing one’s
voting rule.

Among the highlights of our classifications are: We show
that, depending on the size of the manipulative coalition, the
online manipulation problem can be complete for each level
of the polynomial hierarchy or even for PSPACE. We obtain
the most dramatic contrast to date between the nonunique-
winner and unique-winner models: Online weighted ma-
nipulation for plurality is in P in the nonunique-winner
model, yet is coNP-hard (constructive case) and NP-hard
(destructive case) in the unique-winner model. And we ob-

tain what to the best of our knowledge are the first PNP[1]-
completeness and PNP-completeness results in the field of
computational social choice, in particular proving such com-
pleteness for, respectively, the complexity of 3-candidate
and 4-candidate (and unlimited-candidate) online weighted
coalition manipulation of veto elections.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent systems; F.1.2 [Computation by Ab-

stract Devices]: Modes of Computation; F.2.2 [Analysis

of Algorithms and Problem Complexity]: Nonnumer-
ical Algorithms and Problems

General Terms
Theory

Keywords
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elections, manipulation, online algorithms, preferences, se-
quential voting

1. INTRODUCTION
Voting is a widely used method for preference aggrega-

tion and decision-making. In particular, strategic voting (or
manipulation) has been studied intensely in social choice
theory (starting with the celebrated work of Gibbard [19]
and Satterthwaite [29]) and, in the rapidly emerging area
of computational social choice, also with respect to its algo-
rithmic properties and computational complexity (starting
with the seminal work of Bartholdi, Tovey, and Trick [3];
see the surveys [15, 16]). This computational aspect is par-
ticularly important in light of the many applications of vot-
ing in computer science, ranging from meta-search heuristics
for the internet [14], to recommender systems [18] and mul-
tiagent systems in artificial intelligence (see the survey by
Conitzer [11]).

Most of the previous work on manipulation, however, is
concerned with voting where the manipulators know the
nonmanipulative votes. Far less attention has been paid
(see the related work below) to manipulation in the midst
of elections that are modeled as dynamic processes.

We introduce a novel framework for online manipulation,
where voters vote in sequence and the current manipulator,
who knows the previous votes and which voters are still to
come but does not know their votes, must decide—right at
that moment—what the “best” vote to cast is. So, while
other approaches to sequential voting are stochastic, game-
theoretic (yet different from our approach, see Footnote 1),
or axiomatic in nature (again, see the related work), our
approach to manipulation of sequential voting is shaped by
the area of “online algorithms” [8], in the technical sense of
a setting in which one (for us, each manipulative voter) is
being asked to make a manipulation decision just on the ba-
sis of the information one has in one’s hands at the moment
even though additional information/system evolution may
well be happening down the line. In this area, there are dif-
ferent frameworks for evaluation. But the most attractive
one, which pervades the area as a general theme, is the idea
that one may want to “maxi-min” things—one may want to
take the action that maximizes the goodness of the set of out-
comes that one can expect regardless of what happens down
the line from one time-wise. For example, if the current ma-
nipulator’s preferences are Alice > Ted > Carol > Bob and
if she can cast a (perhaps insincere) vote that ensures that
Alice or Ted will be a winner no matter what later voters
do, and there is no vote she can cast that ensures that Alice
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will always be a winner, this maxi-min approach would say
that that vote is a “best” vote to cast.

It will perhaps be a bit surprising to those familiar with
online algorithms and competitive analysis that in our model
of online manipulation we will not use a (competitive) ratio.
The reason is that voting commonly uses an ordinal pref-
erence model, in which preferences are total orders of the
candidates. It would be a severely improper step to jump
from that to assumptions about intensity of preferences and
utility, e.g., to assuming that everyone likes her nth-to-least
favorite candidate exactly n times more than she likes her
least favorite candidate.

Related Work.
Conitzer and Xia [37] (see also the related paper by

Desmedt and Elkind [13]) define and study the Stackel-
berg voting game (also quite naturally called, in an earlier
paper that mostly looked at two candidates, the roll-call
voting game [30]). This basically is an election in which
the voters vote in order, and the preferences are common
knowledge—everyone knows everyone else’s preferences, ev-
eryone knows that everyone knows everyone else’s prefer-
ences, and so on out to infinity. Their analysis of this game
is game-theoretically shaped; they compute a subgame per-
fect Nash equilibrium from the back end forward. Under
their work’s setting and assumptions, for bounded numbers
of manipulators manipulation is in P, but we will show that
in our model even with bounded numbers of manipulators
manipulation sometimes (unless P = NP) falls beyond P.1

The interesting“dynamic voting”work of Tennenholtz [33]
investigates sequential voting, but focuses on axioms and
voting rules rather than on coalitions and manipulation.
Much heavily Markovian work studies sequential decision-
making and/or dynamically varying preferences; our work
in contrast is nonprobabilistic and focused on the complex-
ity of coalitional manipulation. Also somewhat related to,
but quite different from, our work is the work on possible
and necessary winners. The seminal paper on that is due to
Konczak and Lang [25], and more recent work includes [36,

1Our work too is game-theoretically connected. Although in
our model we are asking whether we can reach our goal no
matter what the future nonmanipulators do, if one thinks
about what the actual effect of this is, one can see that
our setting is in effect well-captured by what is known as
a 2-player combinatorial game (combinatorial games are a
particular type of complete-information sequential game).
In our setting, the goal of one player in this game will be to
ensure that the winner set (which of course heavily depends
on what moves have occurred already and on the election
system) will have nonempty intersection with a certain sub-
set of the candidates, and the goal of the other player will
be to ensure that that does not happen. Of course, the for-
mer player is in effect the currently-under-consideration and
still-to-vote members of the manipulative coalition, and the
latter player is capturing the same except regarding non-
manipulators. So, the key differences between [37] and our
work regard goals and coalitionality. For them, each player
(and they may have many players) is in effect a completely
separate agent, with a preference order, and is trying to see
if a change as an individual will make a more preferred can-
didate win. For us, the manipulative voters function as a
coalition, and one that has an all-or-nothing goal, and there
are no gradations within that goal in terms of our analy-
sis (despite the fact that we use a preference order when
speaking of the coalition), and we are in effect a two-player
combinatorial game.

7, 1, 5, 6, 10, 4, 27]; the biggest difference is that those are,
loosely, one-quantifier settings, but the more dynamic set-
ting of online manipulation involves numbers of quantifiers
that can grow with the input size. Another related research
line studies multi-issue elections [38, 39, 40, 41]; although
there the separate issues may run in sequence, each issue
typically is voted on simultaneously and with preferences
being common knowledge.

2. PRELIMINARIES

Elections.
A (standard, i.e., simultaneous) election (C,V ) is speci-

fied by a set C of candidates and a list V , where we assume
that each element in V is a pair (v, p) such that v is a voter
name and p is v’s vote. How the votes in V are represented
depends on the election system used—we assume, as is re-
quired by most systems, votes to be total preference orders
over C. For example, if C = {a, b, c}, a vote of the form
c > a > b means that this voter (strictly) prefers c to a and
a to b.

We introduce election snapshots to capture sequential
election scenarios as follows. Let C be a set of candidates
and let u be (the name of) a voter. An election snapshot for
C and u is specified by a triple V = (V<u, u, Vu<) consist-
ing of all voters in the order they vote, along with, for each
voter before u (i.e., those in V<u), the vote she cast, and
for each voter after u (i.e., those in Vu<), a bit specifying if
she is part of the manipulative coalition (to which u always
belongs). That is, V<u = ((v1, p1), (v2, p2), . . . , (vi−1, pi−1)),
where the voters named v1, v2, . . . , vi−1 (including perhaps
manipulators and nonmanipulators) have already cast their
votes (preference order pj being cast by vj), and Vu< =
((vi+1, xi+1), (vi+2, xi+2), . . . , (vn, xn)) lists the names of the
voters still to cast their votes, in that order, and where
xj = 1 if vj belongs to the manipulative coalition and xj = 0
otherwise.

Scoring Rules.
A scoring rule for m candidates is given by a scoring vec-

tor α = (α1, α2, . . . , αm) of nonnegative integers such that
α1 ≥ α2 ≥ · · · ≥ αm. For an election (C, V ), each candidate
c ∈ C scores αi points for each vote that ranks c in the ith
position. Let score(c) be the total score of c ∈ C. All candi-
dates scoring the most points are winners of (C, V ). Some of
the most popular voting systems are k-approval (especially
plurality, aka 1-approval) and k-veto (especially veto, aka 1-
veto). Their m-candidate, m ≥ k, versions are defined by
the scoring vectors (1, . . . , 1| {z }

k

, 0, . . . , 0| {z }
m−k

) and (1, . . . , 1| {z }
m−k

, 0, . . . , 0| {z }
k

).

When m is not fixed, we omit the phrase “m-candidate.”

Manipulation.
The (standard) weighted coalitional manipulation prob-

lem [12], E-Weighted-Coalitional-Manipulation (abbrevi-
ated by E-WCM), for any election system E is defined as
follows: Given a candidate set C, a list S of nonmanipula-
tive voters each having a nonnegative integer weight, a list T
of the nonnegative integer weights of the manipulative voters
(whose preferences over C are unspecified), with S ∩ T = ∅,
and a distinguished candidate c ∈ C, can the manipulative
votes T be set such that c is a (or the) E winner of (C,S∪T )?

Asking whether c can be made “a winner” is called the
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nonunique-winner model and is the model of all notions in
this paper unless mentioned otherwise. If one asks whether
c can be made a “one and only winner,” that is called the
unique-winner model. We also use the unweighted variant,
where each vote has unit weight, and write E-UCM as a
shorthand. Note that E-UCM with a single manipulator
(i.e., ‖T‖ = 1 in the problem instance) is the manipulation
problem originally studied in [3, 2]. Conitzer, Sandholm,
and Lang [12] also introduced the destructive variants of
these manipulation problems, where the goal is not to make
c win but to ensure that c is not a winner, and we denote
the corresponding problems by E-DWCM and E-DUCM.
Finally, we write E-WC�=∅M, E-UC�=∅M, E-DWC�=∅M, and
E-DUC�=∅M to indicate that the problem instances are re-
quired to have a nonempty coalition of manipulators.

Complexity-Theoretic Background.
We assume the reader is familiar with basic complexity-

theoretic notions such as the complexity classes P and
NP, the class FP of polynomial-time computable functions,
polynomial-time many-one reducibility (≤p

m), and hardness
and completeness with respect to ≤p

m for a complexity class.
Meyer and Stockmeyer [28] and Stockmeyer [31] intro-

duced and studied the polynomial hierarchy, PH =
S

k≥0 Σp

k,

whose levels are inductively defined by Σp
0 = P and Σp

k+1 =

NPΣ
p

k , and their co-classes, Πp

k = coΣp

k for k ≥ 0. They also
characterized these levels by polynomially length-bounded
alternating existential and universal quantifiers. PNP is the
class of problems solvable in deterministic polynomial time
with access to an NP oracle. PNP[1] is the restriction of PNP

where only one oracle query is allowed. P ⊆ NP ∩ coNP ⊆
NP ∪ coNP ⊆ PNP[1] ⊆ PNP ⊆ Σp

2 ∩ Πp
2 ⊆ Σp

2 ∪ Πp
2 ⊆ PH ⊆

PSPACE, where PSPACE is the class of problems solvable
in polynomial space. The quantified boolean formula prob-
lem, QBF, is a standard PSPACE-complete problem. QBFk

(Q̃BFk) denotes the restriction of QBF with at most k quan-
tifiers that start with ∃ (∀) and then alternate between ∃
and ∀, and we assume that each ∃ and ∀ quantifies over a set
of boolean variables. For each k ≥ 1, QBFk is Σp

k-complete

and Q̃BFk is Πp

k-complete [32, 35].

3. OUR MODEL OF ONLINE MANIPULA-
TION

The core of our model of online manipulation in sequential
voting is what we call the magnifying-glass moment, namely,
the moment at which a manipulator u is the one who is go-
ing to vote, is aware of what has happened so far in the
election (and which voters are still to come, but in general
not knowing what they want, except in the case of voters,
if any, who are coalitionally linked to u). In this moment, u
seeks to “figure out” what the “best” vote to cast is. We will
call the information available in such a moment an online
manipulation setting (OMS, for short) and define it formally
as a tuple (C,u, V, σ, d), where C is a set of candidates; u
is a distinguished voter; V = (V<u, u, Vu<) is an election
snapshot for C and u; σ is the preference order of the ma-
nipulative coalition to which u belongs; and d ∈ C is a
distinguished candidate. Given an election system E , define
the problem online-E-Unweighted-Coalitional-Manipulation
(abbreviated by online-E-UCM), as follows: Given an OMS
(C, u, V, σ, d) as described above, does there exist some vote

that u can cast (assuming support from the manipulators
coming after u) such that no matter what votes are cast by
the nonmanipulators coming after u, there exists some c ∈ C
such that c ≥σ d and c is an E winner of the election? By
“support from the manipulators coming after u” we mean
that u’s coalition partners coming after u, when they get to
vote, will use their then-in-hand knowledge of all votes up to
then to help u reach her goal: By a joint effort u’s coalition
can ensure that the E winner set will always include a candi-
date liked by the coalition as much as or more than d, even
when the nonmanipulators take their strongest action so as
to prevent this. Note that this candidate, c in the problem
description, may be different based on the nonmanipulators’
actions. (Nonsequential manipulation problems usually fo-
cus on whether a single candidate can be made to win, but
in our setting, this “that person or better” focus is more
natural.) For the case of weighted manipulation, each voter
also comes with a nonnegative integer weight. We denote
this problem by online-E-WCM.

We write online-E-UCM[k] in the unweighted case and
online-E-WCM[k] in the weighted case to denote the prob-
lem when the number of manipulators from u onward is
restricted to be at most k.

Denote the corresponding destructive problems by
online-E-DUCM, online-E-DWCM, online-E-DUCM[k], and
online-E-DWCM[k]. In online-E-DUCM we ask whether the
given current manipulator u (assuming support from the
manipulators after her) can cast a vote such that no mat-
ter what votes are cast by the nonmanipulators after u, no
c ∈ C with d ≥σ c is an E winner of the election, i.e., u’s
coalition can ensure that the E winner set never includes d or
any even more hated candidate. The other three problems
are defined analogously.

Note that online-E-UCM generalizes the original un-
weighted manipulation problem with a single manipulator
as introduced by Bartholdi, Tovey, and Trick [3]. Indeed,
their manipulation problem in effect is the special case of
online-E-UCM when restricted to instances where there is
just one manipulator, she is the last voter to cast a vote,
and d is the coalition’s most preferred candidate. Simi-
larly, online-E-WCM generalizes the (standard) coalitional
weighted manipulation problem (for nonempty coalitions of
manipulators). Indeed, that traditional manipulation prob-
lem is the special case of online-E-WCM, restricted to in-
stances where only manipulators come after u and d is the
coalition’s most preferred candidate. If we take an anal-
ogous approach except with d restricted now to being the
most hated candidate of the coalition, we generalize the cor-
responding notions for the destructive cases. We summarize
these observations as follows.

Proposition 1. For each election system E , it holds
that (1) E-UC�=∅M ≤p

m online-E-UCM, (2) E-WC�=∅M ≤p
m

online-E-WCM, (3) E-DUC�=∅M ≤p
m online-E-DUCM, and

(4) E-DWC�=∅M ≤p
m online-E-DWCM.

Corollary 2 below follows immediately.

Corollary 2. (1) For each election system E such that
the (unweighted) winner problem is solvable in polynomial
time, it holds that E-UCM ≤p

m online-E-UCM. (2) For each
election system E such that the weighted winner problem
is solvable in polynomial time, it holds that E-WCM ≤p

m

online-E-WCM. (3) For each election system E such that
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the winner problem is solvable in polynomial time, it holds
that E-DUCM ≤p

m online-E-DUCM. (4) For each elec-
tion system E such that the weighted winner problem is
solvable in polynomial time, it holds that E-DWCM ≤p

m

online-E-DWCM.

We said above that, by default, we will use the nonunique-
winner model and all the above problems are defined in
this model. However, we will also have some results in the
unique-winner model, which will, here, sharply contrast with
the corresponding results in the nonunique-winner model.
To indicate that a problem, such as online-E-UCM, is in the
unique-winner model, we write online-E-UCMUW and ask
whether the current manipulator u (assuming support from
the manipulators coming after her) can ensure that there
exists some c ∈ C such that c ≥σ d and c is the unique E
winner of the election.

4. GENERAL RESULTS

Theorem 3. (1) For each election system E whose
weighted winner problem can be solved in polynomial time,2

the problem online-E-WCM is in PSPACE. (2) For each
election system E whose winner problem can be solved in
polynomial time, the problem online-E-UCM is in PSPACE.
(3) There exists an election system E with a polynomial-
time winner problem such that the problem online-E-UCM
is PSPACE-complete. (4) There exists an election system E
with a polynomial-time weighted winner problem such that
the problem online-E-WCM is PSPACE-complete.

The proof of Theorem 3 is deferred to the appendix. The
following theorem shows that for bounded numbers of ma-
nipulators the complexity crawls up the polynomial hierar-
chy. The theorem’s proof is based on the proof given above,
except we need to use the alternating quantifier characteriza-
tion due to Meyer and Stockmeyer [28] and Stockmeyer [31]
for the upper bound and to reduce from the Σp

2k-complete
problem QBF2k rather than from QBF for the lower bound.

Theorem 4. Fix any k ≥ 1. (1) For each election system
E whose weighted winner problem can be solved in polyno-
mial time, the problem online-E-WCM[k] is in Σp

2k. (2) For
each election system E whose winner problem can be solved
in polynomial time, the problem online-E-UCM[k] is in Σp

2k.
(3) There exists an election system E with a polynomial-time
winner problem such that the problem online-E-UCM[k] is
Σp

2k-complete. (4) There exists an election system E with a
polynomial-time weighted winner problem such that the prob-
lem online-E-WCM[k] is Σp

2k-complete.

Note that the (constructive) online manipulation prob-
lems considered in Theorems 3 and 4 are about ensuring
that the winner set always contains some candidate in the
σ segment stretching from d up to the top-choice. Now
consider “pinpoint” variants of these problems, where we
ask whether the distinguished candidate d herself can be
guaranteed to be a winner (for nonsequential manipula-
tion, that version indeed is the one commonly studied).

2We mention in passing here, and henceforward we will not
explicitly mention it in the analogous cases, that the claim
clearly remains true even when“polynomial time”is replaced
by the larger class “polynomial space.”

Denote the pinpoint variant of, e.g., online-E-UCM[k] by
pinpoint-online-E-UCM[k]. Since our hardness proofs in
Theorems 3 and 4 make all or no one a winner (and as
the upper bounds in these theorems also can be seen to hold
for the pinpoint variants), they establish the correspond-
ing completeness results also for the pinpoint cases. We
thus have completeness results for PSPACE and Σp

2k for
each k ≥ 1. What about the classes Σp

2k−1 and Πp

k, for
each k ≥ 1? We can get completeness results for all these
classes by defining appropriate variants of online manipula-
tion problems. Let OMP be any of the online manipulation
problems considered earlier, including the pinpoint variants
mentioned above. Define freeform-OMP to be just as OMP,
except we no longer require the distinguished voter u to be
part of the manipulative coalition—u can be in or can be
out, and the input must specify, for u and all voters af-
ter u, which ones are the members of the coalition. The
question of freeform-OMP is whether it is true that for all
actions of the nonmanipulators at or after u (for specificity
as to this problem: if u is a nonmanipulator, it will in the
input come with a preference order) there will be actions
(each taken with full information on cast-before-them votes)
of the manipulative coalition members such that their goal
of making some candidate c with c ≥σ d (or exactly d, in
the pinpoint versions) a winner is achieved. Then, when-
ever Theorem 4 establishes a Σp

2k or Σp

2k-completeness re-
sult for OMP, we obtain a Πp

2k+1 or Πp

2k+1-completeness
result for freeform-OMP and for k = 0 manipulators we ob-
tain Πp

1 = coNP or coNP-completeness results. Similarly,
the PSPACE and PSPACE-completeness results for OMP
we established in Theorem 3 also can be shown true for
freeform-OMP.

On the other hand, if we define a variant of OMP by
requiring the final voter to always be a manipulator, the
PSPACE and PSPACE-completeness results for OMP from
Theorem 3 remain true for this variant; the Σp

2k and Σp

2k-
completeness results for OMP from Theorem 4 change
to Σp

2k−1 and Σp

2k−1-completeness results for this variant;
and the above Πp

2k+1 and Πp

2k+1-completeness results for
freeform-OMP change to Πp

2k and Πp

2k-completeness results
for this variant, k ≥ 1.

Finally, as an open direction (and related conjecture),
we define for each of the previously considered vari-
ants of online manipulation problems a full profile ver-
sion. For example, fullprofile-online-E-UCM[k] (for a given
election system E) is the function problem that, given
an OMS without any distinguished candidate, (C,u, V, σ),
returns a length ‖C‖ bit-vector that for each candi-
date d ∈ C says if the answer to “(C, u, V, σ, d) ∈
online-E-UCM[k]?” is “yes” (1) or “no” (0). The func-
tion problem fullprofile-pinpoint-online-E-UCM[k] is defined
analogously, except regarding pinpoint-online-E-UCM[k].

It is not hard to prove, as a corollary to Theorem 4, that:

Theorem 5. For each election system E whose winner
problem can be solved in polynomial time, (1) the problem

fullprofile-online-E-UCM[k] is in FPΣ
p

2k
[O(log n)], the class of

functions computable in polynomial time given Turing access
to a Σp

2k oracle with O(log n) queries allowed on size n in-

puts; (2) fullprofile-pinpoint-online-E-UCM[k] is in FP
Σ

p

2k
tt ,

the class of functions computable in polynomial time given
truth-table access to a Σp

2k oracle.
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We conjecture that both problems are complete for the
corresponding class under metric reductions [26], for suit-
ably defined election systems with polynomial-time winner
problems.

If the full profile version of an online manipulation prob-
lem can be computed efficiently, we clearly can also easily
solve each of the decision problems involved by looking at the
corresponding bit of the length ‖C‖ bit-vector. Conversely,
if there is an efficient algorithm for an online manipulation
decision problem, we can easily solve its full profile version
by running this algorithm for each candidate in turn. Thus,
we will state our later results only for online manipulation
decision problem.

Proposition 6. Let OMP be any of the online manipula-
tion decision problems defined above. Then fullprofile-OMP
is in FP if and only if OMP is in P.

5. RESULTS FOR SPECIFIC NATURAL
VOTING SYSTEMS

The results of the previous section show that, simply put,
even for election systems with polynomial-time winner prob-
lems, online manipulation can be tremendously difficult.
But what about natural election systems? We will now take
a closer look at important natural systems. We will show
that online manipulation can be easy for them, depending on
which particular problem is considered, and we will also see
that the constructive and destructive cases can differ sharply
from each other and that it really matters whether we are
in the nonunique-winner model or the unique-winner model.
Finally, in studying the complexity of online manipulation
of veto elections, we obtain (as Theorems 11 and 12) what to

the best of our knowledge are the first PNP[1]-completeness
and PNP-completeness results in the field of computational
social choice.

Theorem 7. (1) online-plurality-WCM (and thus also
online-plurality-UCM) is in P. (2) online-plurality-DWCM
(and thus also online-plurality-DUCM) is in P.

Theorem 7 refers to problems in the nonunique-winner
model. By contrast, we now show that online manipulation
for weighted plurality voting in the unique-winner model
is coNP-hard in the constructive case and is NP-hard in
the destructive case. This is perhaps the most dramatic,
broad contrast yet between the nonunique-winner model
and the unique-winner model, and is the first such contrast
involving plurality. The key other NP-hardness versus P
result for the nonunique-winner model versus the unique-
winner model is due to Faliszewski, Hemaspaandra, and
Schnoor [17], but holds only for (standard) weighted ma-
nipulation for Copelandα elections (0 < α < 1) with exactly
three candidates; for fewer than three both cases there are
in P and for more than three both are NP-complete. In
contrast, the P results of Theorem 7 hold for all numbers
of candidates, and the NP-hardness and coNP-hardness re-
sults of Theorem 8 hold whenever there are at least two
candidates.

Theorem 8. (1) online-plurality-DWCMUW is NP-hard,
even when restricted to only two candidates (and this
also holds when restricted to three, four, ... candidates).

(2) online-plurality-WCMUW is coNP-hard, even when re-
stricted to only two candidates (and this also holds when
restricted to three, four, ... candidates).

Proof. For the first statement, we prove NP-hardness of
online-plurality-DWCMUW by a reduction from the NP-
complete problem Partition: Given a nonempty sequence
(w1, w2, . . . , wz) of positive integers such that

Pz

i=1 wi =
2W for some positive integer W , does there exist a set
I ⊆ {1, 2, . . . , z} such that

P
i∈I wi = W ? Let m ≥ 2.

Given an instance (w1, w2, . . . , wz) of Partition, construct
an instance ({c1, . . . , cm}, u1, V, c1 > c2 > · · · > cm, c1) of
online-plurality-DWCMUW such that V contains m+ z − 2
voters v1, . . . , vm−2, u1, . . . , uz who vote in that order. For
1 ≤ i ≤ m− 2, vi votes for ci and has weight (m− 1)W − i,
and for 1 ≤ i ≤ z, ui is a manipulator of weight (m− 1)wi.
If (w1, w2, . . . , wz) is a yes-instance of Partition, the manip-
ulators can give (m−1)W points to both cm−1 and cm, and
zero points to the other candidates. So cm−1 and cm are tied
for the most points and there is no unique winner. On the
other hand, the only way to avoid having a unique winner
in our online-plurality-DWCMUW instance is if there is a tie
for the most points. The only candidates that can tie are
cm−1 and cm, since all other pairs of candidates have differ-
ent scores modulo m− 1. It is easy to see that cm−1 and cm
tie for the most points only if they both get exactly (m−1)W
points. It follows that (w1, w2, . . . , wz) is a yes-instance of
Partition.

For the second part, we adapt the above construc-
tion to yield a reduction from Partition to the com-
plement of online-plurality-WCMUW. Given an in-
stance (w1, w2, . . . , wz) of Partition, construct an in-
stance ({c1, . . . , cm}, bu, V, c1 > c2 > · · · > cm, cm) of
online-plurality-WCMUW such that V contains m + z − 1
voters v1, . . . , vm−2, bu, u1, . . . , uz who vote in that order. For
1 ≤ i ≤ m − 2, vi has the same vote and the same weight
as above, bu is a manipulator of weight 0, and for 1 ≤ i ≤ z,
ui has the same weight as above, but in contrast to the case
above, ui is now a nonmanipulator. By the same argument
as above, it follows that (w1, w2, . . . , wz) is a yes-instance
of Partition if and only if the nonmanipulators can ensure
that there is no unique winner, which in turn is true if and
only if the manipulator can not ensure that there is a unique
winner. ❑

Theorem 9. For each scoring rule α = (α1, . . . , αm),
online-α-WCM is in P if α2 = αm and is NP-hard oth-
erwise.

Theorem 10. For each k, online-k-approval-UCM and
online-k-veto-UCM are in P.

Proof. Consider 1-veto. Given an online-1-veto-UCM in-
stance (C, u, V, σ, d), the best strategy for the manipulators
from u onward (let n1 denote how many of these there are)
is to minimize maxc<σd score(c). Let n0 denote how many
nonmanipulators come after u. We claim that (C, u, V, σ, d)
is a yes-instance if and only if d is ranked last in σ or there ex-
ists a threshold t such that (1)

P
c<σd

(maxscore(c)t) ≤ n1

(so those manipulators can ensure that all candidates ranked
<σ d score at most t points), where “” denotes proper
subtraction (x  y = max(x − y, 0)) and maxscore(c) is c’s
score when none of the voters from u onward veto c, and
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(2)
P

c≥σd
(maxscore(c)  (t − 1)) > n0 (so those nonma-

nipulators cannot prevent that some candidate ranked ≥σ d
scores at least t points).

For 1-veto under the above approach, in each situation
where the remaining manipulators can force success against
all actions of the remaining nonmanipulators, u (right then
as she moves) can set her and all future manipulators’ ac-
tions so as to force success regardless of the actions of the
remaining nonmanipulators. For k-approval and k-veto,
k ≥ 2, that approach provably cannot work (as will be ex-
plained right after this proof); rather, we sometimes need
later manipulators’ actions to be shaped by intervening non-
manipulators’ actions. Still, the following P-time algorithm,
which works for all k, tells whether success can be forced.
As a thought experiment, for each voter v from u onwards in

sequence do this: Order the candidates in {c | c ≥σ d} from
most to least current approvals, breaking ties arbitrarily,
and postpend the remaining candidates ordered from least
to most current approvals. Let � be k for k-approval and
‖C‖− k for k-veto. Cast the voter’s � approvals for the first
� candidates in this order if v is a manipulator, and other-
wise for the last � candidates in this order. Success can be
forced against perfect play if and only if this P-time process
leads to success. ❑

In the above proof we said that the approach for 1-veto
(in which the current manipulator can set her and all fu-
ture manipulators’ actions so as to force success indepen-
dent of the actions of intervening future nonmanipulators)
provably cannot work for k-approval and k-veto, k ≥ 2.
Why not? Consider an OMS (C, u, V, σ, d) with candidate
set C = {c1, c2, . . . , c2k}, σ being given by c1 >σ c2 >σ

· · · >σ c2k, and d = c1. So, u’s coalition wants to en-
force that c1 is a winner. Suppose that v1 has already cast
her vote, now it’s v2 = u’s turn, and the order of the fu-
ture voters is v3, v4, . . . , v2j , where all v2i, 2 ≤ i ≤ j, be-
long to u’s coalition, and all v2i−1 do not. Suppose that v1
was approving of the k candidates in C1 ⊆ {c2, c3, . . . , c2k},
‖C1‖ = k. Then u must approve of the k candidates in C1,
to ensure that c1 draws level with the candidates in C1 and
none of these candidates can gain another point. Next, sup-
pose that nonmanipulator v3 approves of the k candidates in
C3 ⊆ {c2, c3, . . . , c2k}, ‖C3‖ = k. Then v4, the next manip-
ulator, must approve of all candidates in C3, to ensure that
c1 draws level with the candidates in C3 and none of these
candidates can gain another point. This process is repeated
until the last nonmanipulator, v2j−1, approves of the candi-
dates in C2j−1 ⊆ {c2, c3, . . . , c2k}, ‖C2j−1‖ = k, and v2j , the
final manipulator, is forced to counter this by approving of
all candidates in C2j−1, to ensure that c1 is a winner. This
shows that there can be arbitrarily long chains such that the
action of each manipulator after u depends on the action of
the preceding intervening nonmanipulator.

We now turn to online weighted manipulation for veto
when restricted to three candidates. We denote this restric-
tion of online-veto-WCM by online-veto|3-WCM.

Theorem 11. online-veto|3-WCM is PNP[1]-complete.

Moving from three to four candidates increases the com-
plexity, namely to PNP-completeness, and that same bound
holds for unlimitedly many candidates. Although this is
a strict increase in complexity from PNP[1]-completeness
(unless the polynomial hierarchy collapses [24]), member-
ship in PNP still places this problem far below the general

PSPACE bound from earlier in this paper. The proof of
Theorem 12 is deferred to the appendix. Immediately from
Theorems 10 and 12, we have that the full profile variants of
online-k-veto-UCM and online-k-approval-UCM are in FP
and that fullprofile-online-veto-WCM is in FPNP.

Theorem 12. online-veto-WCM is PNP-complete, even
when restricted to only four candidates.

6. UNCERTAINTY ABOUT THE ORDER
OF FUTURE VOTERS

So far, we have been dealing with cases where the order
of future voters was fixed and known. But what happens
if the order of future voters itself is unknown? Even here,
we can make claims. To model this most naturally, our
“magnifying-glass moment” will focus not on one manipula-
tor u, but will focus at a moment in time when some voters
are still to come (as before, we know who they are and which
are manipulators; as before, we have a preference order σ,
and know what votes have been cast so far, and have a dis-
tinguished candidate d). And the question our problem is
asking is: Is it the case that our manipulative coalition can
ensure that the winner set will always include d or some-
one liked more than d with respect to σ (i.e., the winner

set will have nonempty intersection with {c ∈ C | c ≥σ d}),
regardless of what order the remaining voters vote in. We
will call this problem the schedule-robust online manipula-
tion problem, and will denote it by SR-online-E-UCM. (We
will add a “[1,1]” suffix for the restriction of this problem to
instances when at most one manipulator and at most one
nonmanipulator have not yet voted.) One might think that
this problem captures both a Σp

2 and a Πp
2 issue, and so

would be hard for both classes. However, the requirement
of schedule robustness tames the problem (basically what
underpins that is simply that exists-forall-predicate implies
forall-exists-predicate), bringing it into Σp

2. Further, we can
prove, by explicit construction of such a system, that for
some simple election systems this problem is complete for
Σp

2 .

Theorem 13. (1) For each election system E whose win-
ner problem is in P, SR-online-E-UCM is in Σp

2. (2) There
exists an election system E , whose winner problem is in P,
such that the problem SR-online-E-UCM (indeed, even
SR-online-E-UCM[1, 1]) is Σp

2-complete.

7. CONCLUSIONS AND OPEN QUES-
TIONS

We introduced a novel framework for online manipulation
in sequential voting, and showed that manipulation there
can be tremendously complex even for systems with simple
winner problems. We also showed that among the most im-
portant election systems, some have efficient online manipu-
lation algorithms but others (unless P = NP) do not. It will
be important to, complementing our work, conduct typical-
case complexity studies (although we mention in passing
that unless the polynomial hierarchy collapses, no heuristic
algorithm for any NP-hard problem can have a subexponen-
tial error rate, see the discussion in the survey [23]). We
have extended the scope of our investigation by studying
online control [22, 21] and will also study online bribery.
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APPENDIX. DEFERRED PROOFS
We provide here deferred proofs of two of our results that
were not proven in the paper’s body. Most other proofs not
in the body can be found in the technical report version [20].

Proof of Theorem 3. The proof of the first statement
(which is analogous to the proof of the first statement in
Theorem 4) follows from the easy fact that online-E-WCM
can be solved by an alternating Turing machine in polyno-
mial time, and thus, due to the characterization of Chandra,
Kozen, and Stockmeyer [9], by a deterministic Turing ma-
chine in polynomial space. The proof of the second case is
analogous.

We construct an election system E establishing the third
statement. Let (C, u, V, σ, d) be a given input. E will look
at the lexicographically least candidate name in C. Let c
represent that name string in some fixed, natural encoding.
E will check if c represents a tiered boolean formula, by which
we mean one whose variable names are all of the form xi,j

(which really means a direct encoding of a string, such as
“x4,9”); the i, j fields must all be positive integers. If c does
not represent such a tiered formula, everyone loses on that
input. Otherwise (i.e., if c represents a tiered formula), let
width be the maximum j occurring as the second subscript in
any variable name (xi,j) in c, and let blocks be the maximum
i occurring as the first subscript in any variable name in c.
If there are fewer than blocks voters in V , everyone loses.
Otherwise, if there are fewer than 1 + 2 · width candidates
in C, everyone loses (this is so that each vote will involve
enough candidates that it can be used to set all the variables
in one block). Otherwise, if there exists some i, 1 ≤ i ≤
blocks , such that for no j does the variable xi,j occur in c,
then everyone loses. Otherwise, order the voters from the
lexicographically least to the lexicographically greatest voter
name. If distinct voters are allowed to have the same name
string (e.g., John Smith), we break ties by sorting according
to the associated preference orders within each group of tied
voters (second-order ties are no problem, as those votes are
identical, so any order will have the same effect). Now,
the first voter in this order will assign truth values to all
variables x1,∗, the second voter in this order will assign truth
values to all variables x2,∗, and so on up to the blocksth
voter, who will assign truth values to all variables xblocks,∗.

How do we get those assignments from these votes? Con-
sider a vote whose total order over C is σ′ (and recall that
‖C‖ ≥ 1 + 2 · width). Remove c from σ′, yielding σ′′. Let
c1 <σ′′ c2 <σ′′ · · · <σ′′ c2·width be the 2 · width least pre-
ferred candidates in σ′′. We build a vector in {0, 1}width as
follows: The �th bit of the vector is 0 if the string that names
c1+2(�−1) is lexicographically less than the string that names
c2�, and this bit is 1 otherwise.

Let bi denote the vector thus built from the ith vote (in
the above ordering), 1 ≤ i ≤ blocks . Now, for each variable
xi,j occurring in c, assign to it the value of the jth bit of bi,
where 0 represents false and 1 represents true. We have now
assigned all variables of c, so c evaluates to either true or
false. If c evaluates to true, everyone wins, otherwise every-
one loses. This completes the specification of the election
system E . E has a polynomial-time winner problem, as any
boolean formula, given an assignment to all its variables,
can easily be evaluated in polynomial time.

To show PSPACE-hardness, we ≤p
m-reduce the PSPACE-

complete problem QBF to the problem online-E-UCM. Let
y be an instance of QBF. We transform y into an instance
of the form (∃x1,1, x1,2, . . . , x1,k1

) (∀x2,1, x2,2, . . . , x2,k2
) · · ·

(Q� x�,1, x�,2, . . . , x�,k�
) [Φ(x1,1, x1,2, . . . , x1,k1

, x2,1, x2,2, . . . ,
x2,k2

, . . . , x�,1, x�,2, . . . , x�,k�
)] in polynomial time, where

Q� = ∃ if � is odd and Q� = ∀ if � is even, the xi,j are
boolean variables, Φ is a boolean formula, and for each i,
1 ≤ i ≤ �, Φ contains at least one variable of the form xi,∗.
This quantified boolean formula is ≤p

m-reduced to an
instance (C, u, V, σ, c) of online-E-UCM as follows:

1. C contains a candidate whose name, c, encodes Φ,
and in addition C contains 2 · max(k1, . . . , k�) other
candidates, all with names lexicographically greater
than c—for specificity, let us say their names are the
2 ·max(k1, . . . , k�) strings that immediately follow c in
lexicographic order.

2. V contains � voters, 1, 2, . . . , �, who vote in that or-
der, where u = 1 is the distinguished voter and all
odd voters belong to u’s manipulative coalition and all
even voters do not. The voter names will be lexico-
graphically ordered by their number, 1 is least and �
is greatest.

3. The manipulators’ preference order σ is to like candi-
dates in the opposite of their lexicographic order. In
particular, c is the coalition’s most preferred candi-
date.

This is a polynomial-time reduction. It follows immediately
from this construction and the definition of E that y is in
QBF if and only if (C, u, V, σ, c) is in online-E-UCM.

To prove the last statement, simply let E be the election
system that ignores the weights of the voters and then works
exactly as the previous election system. ❑ Theorem 3

Proof of Theorem 12. We first show that
online-veto-WCM is in PNP. The proof is reminiscent of the
proof for 1-veto in Theorem 10. Let (C, u, V, σ, d) be a given
instance of online-veto-WCM with C = {c1, c2, . . . , cm} and
c1 >σ c2 >σ · · · >σ cm. Suppose d = ci. Our PNP algorithm
proceeds as follows:

1. Compute the minimal threshold t1 such that there ex-
ists a partition (Ai+1, . . . , Am) of the weights of the manip-
ulators from u onward such that for each j, i+ 1 ≤ j ≤ m,
maxscore(cj) −

P
Aj ≤ t1, where maxscore(cj) is cj ’s score

when none of the voters from u onward veto c. That is, by
having manipulators from u onward with weights in Aj veto
cj , the manipulators from u onward can ensure that none
of the candidates they dislike more than d exceeds a score
of t1.

2. Compute the minimal threshold t2 such that there
exists a partition (A1, . . . , Ai) of the weights of the non-
manipulators after u such that for each j, 1 ≤ j ≤ i,
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maxscore(cj) −
P
Aj ≤ t2. That is, if the nonmanipulators

after u with weights in Aj veto cj , none of the candidates
that the manipulators like as least as much as d exceeds a
score of t2.

3. Accept if and only if t1 ≤ t2.

Note that the first two steps of the algorithm can both be
done in FPNP by using an NP oracle that checks whether
there exists a partition of the specified kind.

It remains to show that online-veto|4-WCM is PNP-hard.

We will reduce from the standard PNP-complete problem
MAXSATASG=, which is the set of pairs of 3cnf formu-
las3 that have the same maximal satisfying assignment [34].
To be precise, we will assume that our propositional vari-
ables are x1, x2, . . .. If xn is the largest propositional vari-
able occurring in φ, we often write φ(x1, . . . , xn) to make
that explicit. An assignment for φ(x1, . . . , xn) is an n-
bit string α such that αi gives the assignment for variable
xi. We will sometimes identify α with the binary integer
it represents. For φ a formula, maxsatasg(φ) is the lexi-
cographically largest satisfying assignment for φ. If φ is
not satisfiable, maxsatasg(φ) is not defined. And we de-
fine MAXSATASG= as the set of pairs of 3cnf formulas
(φ(x1, . . . , xn), ψ(x1, . . . , xn)) such that φ and ψ are satisfi-
able 3cnf formulas, and maxsatasg(φ) = maxsatasg(ψ).

The OMS that we will construct will have four candi-
dates, a >σ b >σ c >σ d, and the distinguished candidate
will be b. Looking at the PNP algorithm above, we can
see that determining whether the OMS can be manipulated
basically amounts to determining whether the nonmanipu-
lator weights have a “better” partition than the manipulator
weights.

So, we will associate formulas with multisets of positive
integers, and their satisfying assignments with subset sums.
This already happens in the standard reduction from 3SAT
to SubsetSum. However, we also want larger satisfying as-
signments to correspond to “better” subset sums. In order
to do this, we use Wagner’s variation of the 3SAT to Sub-
setSum reduction [34]. Wagner uses this reduction to prove
that determining whether the largest subset sum up to a
certain bound is odd is a PNP-hard problem.

Lemma 14. Let φ(x1, . . . , xn) be a 3cnf formula.
Wagner’s reduction maps this formula to an instance
(k1, . . . , kt, L) of SubsetSum with the following properties:

1. For all assignments α, φ[α] if and only if there exists
a subset of k1, . . . , kt that sums to L+ α.

2. For all K such that 2n ≤ K ≤ 2(2n − 1), no subset of
k1, . . . , kt sums to L+K.

Proof of Lemma 14. The first claim is immediate from
the proof of Theorem 8.1(3) from [34]. For the second claim,
note that L + K ≤ L + 2(2n − 1) < L + 6n. In Wagner’s
construction, L = 3 · · · 3| {z }

m

1 · · · 1| {z }
n

0 · · · 0| {z }
n

in base 6, where m is

the number of clauses in φ. So, (L + K)’s representation
in base 6 is 3 · · · 3| {z }

m

1 · · · 1| {z }
n

followed by n digits. It is easy

to see from Wagner’s construction that the subset sums of

3We denote a formula in conjunctive normal form by cnf
formula, and a 3cnf formula is a cnf formula with exactly
three literals per clause.

this form that can be realized are exactly L + β, where β
is a satisfying assignment of φ. Since K ≥ 2n, K is not
even an assignment, and thus no subset of k1, . . . , kt sums
to L+K. ❑ Lemma 14

Let φ(x1, . . . , xn) and ψ(x1, . . . , xn) be 3cnf formulas,
and consider instance (φ, ψ) of MAXSATASG=. With-
out loss of generality, we assume that x1 does not actu-
ally occur in φ or ψ. We will define an OMS (C, u, V, σ, b)
with C = {a, b, c, d} and σ = a > b > c > d such
that (φ, ψ) ∈ MAXSATASG= if and only if (C, u, V, σ, b)
is a positive instance of online-veto-WCM. Note that
MAXSATASG= corresponds to optimal solutions being
equal, while online-veto-WCM corresponds to one optimal
solution being at least as good as the other. We will first
modify the formulas such that we also look at the optimal
solution for one formula being at least as good as the optimal
solution for the other. The following is immediate.

Claim 15. (φ, ψ) ∈ MAXSATASG= if and only if φ ∧ ψ
is satisfiable and maxsatasg(φ ∧ ψ) ≥ maxsatasg(φ ∨ ψ).

It will also be very useful if one of the formulas is always
satisfiable. We can easily ensure this by adding an extra
variable that will correspond to the highest order bit of the
satisfying assignment. Recall that x1 does not occur in φ or
ψ.

Claim 16. (φ, ψ) ∈ MAXSATASG= if and only if φ∧ψ∧
x1 is satisfiable and

maxsatasg(φ ∧ ψ ∧ x1) ≥ maxsatasg(φ ∨ ψ ∨ x1).

Now we would like to apply the reduction from Lemma 14
on φ ∧ ψ ∧ x1 and φ ∨ ψ ∨ x1. But wait! This reduction is
defined for 3cnf formulas, and φ∨ψ∨x1 is not in 3cnf. Since
φ and ψ are in 3cnf, it is easy to convert φ∨ψ ∨ x1 into cnf
in polynomial time. Let g be the standard reduction from
CNF-SAT to 3SAT. We can rename the variables such that
g has the following property: For ξ(x1, . . . , xn) a cnf for-
mula, g(ξ)(x1, . . . , xn, xn+1, . . . , xn̂) is a 3cnf formula such
that n̂ > n and such that for all assignments α ∈ {0, 1}n,
ξ[α] if and only if there exists an assignment β ∈ {0, 1}n̂−n

such that g(ξ)[αβ].

Let bψ(x1, . . . , xn̂) = g(φ ∨ ψ ∨ x1). Let bφ(x1, . . . , xn̂) =
φ ∧ ψ ∧ (x1 ∨ x1 ∨ x1) ∧ (xn̂ ∨ xn̂ ∨ xn̂).

Claim 17. • bφ and bψ are in 3cnf and bψ is satisfiable.

• (φ, ψ) ∈ MAXSATASG= if and only if bφ is satisfiable

and maxsatasg(bφ) ≥ maxsatasg( bψ).

Proof of Claim 17. From the previous claim we know
that if (φ, ψ) ∈ MAXSATASG=, then φ ∧ ψ ∧ x1 is satisfi-

able and thus bφ is satisfiable. Also from the previous claim,
if (φ, ψ) ∈ MAXSATASG=, then maxsatasg(φ ∧ ψ ∧ x1) ≥
maxsatasg(φ ∨ ψ ∨ x1). Let α be the maximal satisfying
assignment of φ ∧ ψ ∧ x1. Then α1n̂−n is the maximal sat-

isfying assignment of bφ. Let α′ be the maximal satisfying
assignment of φ∨ψ∨x1. Then α′β is the maximal satisfying

assignment of bψ for some β. Since α ≥ α′, it follows that
α1n̂−n ≥ α′β.

For the converse, suppose that bφ is satisfiable and

maxsatasg(bφ) ≥ maxsatasg( bψ). Let γ be the maximal satis-

fying assignment of bφ and let γ′ be the maximal satisfying
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assignment of bψ. Then the length-n prefix of γ is the maxi-
mal satisfying assignment of φ∧ψ∧x1 and the length-n prefix
of γ′ is the maximal satisfying assignment of φ∨ψ∨x1. Since
γ ≥ γ′, the n-bit prefix of γ is greater than or equal to the
n-bit prefix of γ′. ❑ Claim17

We now apply Wagner’s reduction from Lemma 14 to bφ
and bψ. Let k1, . . . , kt, L be the output of Wagner’s reduc-

tion on bφ and let k′1, . . . , k
′
t′ , L

′ be the output of Wagner’s

reduction on bψ.
As mentioned previously, we will define an OMS

(C, u, V, σ, b) with C = {a, b, c, d} and σ = a > b >
c > d such that (φ,ψ) ∈ MAXSATASG= if and only if
(C, u, V, σ, b) is a positive instance of online-veto-WCM. Be-
cause we are looking at veto, when determining the outcome
of an election, it is easiest to simply count the number of ve-
toes for each candidate. Winners have the fewest vetoes.
For ĉ a candidate, we will denote the total weight of the
voters that veto ĉ by vetoes(ĉ).

There are four voters in V<u: one voter of weight L vetoing
a, one voter of weight L + 2L′ + 2(2n̂ − 1) −

P
k′i vetoing

b, one voter of weight L′ vetoing c, and one voter of weight
L′ + 2L + 2(2n̂ − 1) −

P
ki vetoing d. Let u = u1. Vu<

consists of t− 1 further manipulators u2, . . . , ut followed by
t′ nonmanipulators u′

1, . . . , u
′
t′ . The weight of manipulator

ui is ki and the weight of nonmanipulator u′
i is k′i.

It remains to show that the reduction is correct. First
suppose that (φ, ψ) is in MAXSATASG=. By Claim 17, this

implies that bφ and bψ are satisfiable 3cnf formulas such that

maxsatasg(bφ) ≥ maxsatasg( bψ). Let α = maxsatasg(bφ). We
know from Lemma 14 that there exists a subset of k1, . . . , kt

that sums to L+α. The manipulators corresponding to this
subset will veto c, so that c receives L + α vetoes from the
manipulators. The remaining manipulators will veto d, i.e.,
d receives (

P
ki)−L−α vetoes from the manipulators. After

the manipulators have voted, vetoes(a) = L, vetoes(b) = L+
2L′+2(2n̂−1)−

P
k′i, vetoes(c) = L′+L+α, and vetoes(d) =

L′+L+2(2n̂−1)−α. Since α ≤ 2n̂−1, vetoes(c) ≤ vetoes(d).
We will show that no matter how the nonmanipulators vote,
a or b is a winner. Suppose for a contradiction that after
the nonmanipulators have voted, vetoes(a) > vetoes(c) and
vetoes(b) > vetoes(c). If that were to happen, there would
be a subset of k′1, . . . , k

′
t′ summing to K such that L+K =

vetoes(a) > vetoes(c) = L + L′ + α and L + 2L′ + 2(2n̂ −
1)−K = vetoes(b) > vetoes(c) = L+L′ +α. It follows that
α < K−L′ < 2(2n̂−1) and there exists a subset of k′1, . . . , k

′
t′

that sums to L′ + (K −L′). It follows from Lemma 14 that

K−L′ is a satisfying assignment for bψ. But that contradicts

the assumption that maxsatasg(bφ) ≥ maxsatasg( bψ).
The proof of the converse is very similar. Suppose that

(φ, ψ) �∈ MAXSATASG=. By Claim 17, bψ is satisfiable. Let

α = maxsatasg( bψ). By Claim 17, either bφ is not satisfi-

able or maxsatasg(bφ) < α. Suppose the manipulators vote
such that c receives K vetoes from some of them. With-
out loss of generality, assume all other manipulators veto
d, so that d receives (

P
ki) −K vetoes from the manipula-

tors. We know from Lemma 14 that there exists a subset of
k′1, . . . , k

′
t′ that sums to L′ +α. After the manipulators have

voted, the nonmanipulators will vote such that a receives
L′ + α vetoes from the nonmanipulators and the remaining
nonmanipulators will veto b, i.e., b receives (

P
k′i) − L′ − α

vetoes from the nonmanipulators. So, vetoes(a) = L+L′+α,

vetoes(b) = L+L′ + 2(2n̂ − 1)−α, vetoes(c) = L′ +K, and
vetoes(d) = L′+2L+2(2n̂−1)−K. We will show that neither
a nor b is a winner. Since α ≤ 2n̂ − 1, vetoes(a) ≤ vetoes(b).
So it suffices to show that a is not a winner. If a were a
winner, vetoes(a) ≤ vetoes(c) and vetoes(a) ≤ vetoes(d).
This implies that α ≤ K − L ≤ 2(2n̂ − 1). It follows from

Lemma 14 that K −L is a satisfying assignment for bφ. But

that contradicts the assumption that either bφ is not satisfi-

able or maxsatasg(bφ) < α. ❑ Theorem 12
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