
Journal of Computer and System Sciences 81 (2015) 661–670
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Control complexity in Bucklin and fallback voting: 

An experimental analysis ✩

Gábor Erdélyi a, Michael R. Fellows b, Jörg Rothe c,∗, Lena Schend c

a School of Economic Disciplines, University of Siegen, 57076 Siegen, Germany
b Parameterized Complexity Research Unit, Charles Darwin University, Darwin, NT 0909, Australia
c Institut für Informatik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 December 2012
Received in revised form 30 April 2014
Accepted 5 September 2014
Available online 18 November 2014

Keywords:
Computational social choice
Control complexity
Bucklin voting
Fallback voting
Experimental analysis
Election systems

Control in elections models situations in which an external actor tries to change the 
outcome of an election by restructuring the election itself. The corresponding decision 
problems have been shown NP-hard for a variety of voting systems. In particular, in our 
companion paper [16], we have shown that fallback and Bucklin voting are resistant (in 
terms of NP-hardness) to almost all of the common types of control. While NP-hardness 
results for manipulation (another way of tampering with the outcomes of elections) have 
been challenged experimentally (see, e.g., the work of Walsh [38,37]), such an experimental 
approach is sorely missing for control. We for the first time tackle NP-hard control 
problems in an experimental setting. Our experiments allow a more fine-grained analysis 
and comparison—across various control scenarios, vote distribution models, and voting 
systems—than merely stating NP-hardness for all these control problems.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The notion of control in elections was introduced by Bartholdi et al. [4] to model situations where an external actor, “the 
chair,” tries to change the outcome of an election by restructuring the election itself. In the constructive control scenario, the 
chair aims at making a designated candidate the winner of the changed election, while in the destructive control scenario, 
introduced by Hemaspaandra et al. [23], the chair tries to prevent the current winner from winning. To achieve his goal, 
the chair might add or delete candidates or voters, or partition them in the course of a control action. Another way of 
influencing the outcome of an election is manipulation, where a coalition of voters (consisting of one or more voters) 
participating in the election tries to change the outcome by casting insincere votes, see [3,2,10].

Both scenarios have been studied in terms of their worst-case complexity for various voting systems (see, e.g., the 
surveys of Faliszewski et al. [20,18], Conitzer [9], and Faliszewski and Procaccia [17]). One of the main issues of this line of 
research is to determine a natural voting system with a deterministic polynomial-time winner determination procedure that 
is resistant to as many types of control as possible, where resistance is defined as NP-hardness of the corresponding control 

✩ Preliminary versions of parts of this paper appear in the proceedings of the 11th International Symposium on Experimental Algorithms [31] and the COMSOC 
special session at the 12th International Symposium on Artificial Intelligence and Mathematics [32], and were presented at the Tenth International Meeting of the 
Society for Social Choice and Welfare and at the Dagstuhl Seminar “Computation and Incentives in Social Choice” [34].

* Corresponding author.
E-mail address: rothe@cs.uni-duesseldorf.de (J. Rothe).
http://dx.doi.org/10.1016/j.jcss.2014.11.003
0022-0000/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcss.2014.11.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:rothe@cs.uni-duesseldorf.de
http://dx.doi.org/10.1016/j.jcss.2014.11.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2014.11.003&domain=pdf


662 G. Erdélyi et al. / Journal of Computer and System Sciences 81 (2015) 661–670
problem. As shown in our companion paper [16], fallback voting (a hybrid voting system introduced by Brams and Sanver 
[6] that combines Bucklin and approval voting) has the broadest resistance to electoral control currently known to hold.

To complement these theoretical results, we conducted an experimental analysis of the control complexity in fallback 
and Bucklin elections, following the approach proposed by Walsh [37,38] that he, Davies et al. [12], and Narodytska et al. 
[28] (see also [8]) applied to manipulation problems for voting systems such as single transferable vote (STV), veto, Borda’s, 
Nanson’s, and Baldwin’s rules. They showed that these voting systems can often be manipulated effectively, even though 
their manipulation problems are NP-hard. Such an experimental approach has been sorely missing for NP-hard control 
problems; this paper makes the first such attempt. Since both our classical and our parameterized complexity results on 
control in Bucklin and fallback voting [16] refer to a worst-case measure of complexity, they leave open the possibility that 
many elections can still be controlled in a reasonable amount of time. While the above-mentioned papers [38,37,12,28] focus 
on constructive manipulation problems only, we study both constructive and destructive control problems experimentally.

When generating random elections in our experiments, we consider two probability distributions: the Impartial Culture 
model where votes are distributed uniformly and are drawn independently, and the Two Mainstreams model, introduced here 
to model two mainstreams in society by adapting the Pólya–Eggenberger urn model [5]. In general, our findings indicate 
that some of the investigated NP-hard control problems can often be solved effectively in practice, whereas for other types 
of control our experimental results suggest that their problems may indeed be hard to solve even on random instances. 
Our experiments also allow a more fine-grained analysis than merely stating NP-hardness for all the corresponding control 
problems. Specifically, we can quantitatively compare constructive with destructive control, control across various voting 
systems in various control scenarios, and our two particular models of vote distribution.

Related work Many of the recent results on the hardness of manipulation problems are concerned with either typical-case 
analyses and frequency of manipulability1 or quantitative versions of the Gibbard–Satterthwaite theorem; see, in particular, the 
papers by Mossel et al. [27], Procaccia and Rosenschein [30], Dobzinski and Procaccia [13], Friedgut et al. [21], Zuckerman 
et al. [42], Xia and Conitzer [39,40], Xia et al. [41], Isaksson et al. [25], Peleg [29], Baharad and Neeman [1], and Slinko [35,
36]. These papers provide theoretical insights into why NP-hard manipulation problems can still be easy to solve in practice. 
They are complemented by the previously mentioned empirical and experimental studies regarding manipulation problems 
due to Walsh [38,37], Davies et al. [12,11], and Narodytska et al. [28]. Some of these theoretical and experimental results 
have been surveyed by Rothe and Schend [32]. To the best of our knowledge, the experimental investigation of NP-hard 
control problems is new to this paper.

Organization We start by giving a brief summary of the theoretical results of control in fallback and Bucklin elections in 
Section 2, which have been shown in the companion paper [16]. In Section 3 we describe the setup of our experiments 
including the sampling of randomly generated elections and we describe the implemented algorithms. Section 4 provides 
a summary of our findings and a discussion of the results before we conclude in Section 5 with open questions and 
suggestions for future work.

2. Notions and theoretical results from the companion paper [16]

Table 1 gives an overview of the theoretical results for control complexity in fallback and Bucklin elections that were 
shown in the companion paper [16]; we refer to that paper also for the formal definitions of notions mentioned in the 
table, such as the studied control problems (and the tie-handling rules TE and TP), the notions of immunity, susceptibility, 
(parameterized) resistance, and vulnerability.

Note that, based on the work of Bartholdi et al. [4], Hemaspaandra et al. [23], and Faliszewski et al. [19], 22 types of 
electoral control have been defined originally and we conducted our experiments for all those 18 types of electoral control 
Bucklin and fallback voting are not vulnerable to, i.e., the corresponding decision problems are not known to be solvable in 
deterministic polynomial time. Recently, Hemaspaandra et al. [24] discovered that, depending on the winner model, some 
of the destructive cases of control by partition of candidates collapse, so there are in fact fewer than 22 distinct types of 
electoral control. Table 1 indicates these collapses (for the co-winner model) by having only one R entry for two (in fact, 
identical) control types.

3. Experimental setup

In this section we describe the framework of our experimental analysis beginning with the general setup followed by an 
introduction of the distribution models used to sample the randomly generated elections. We will conclude this section by 
giving a high-level description of the algorithms.

As stated in [16, Section 2] the instances of the problems modeling control by adding or by deleting either candidates or 
voters contain a parameter k bounding the number of candidates or voters that can be added or deleted, which is crucial 

1 Erdélyi et al. [14,15] noted that such approaches—which indeed are very valuable to pursue—are not to be mistaken for work in average-case complexity 
theory in the sense of Levin [26].



G. Erdélyi et al. / Journal of Computer and System Sciences 81 (2015) 661–670 663
Table 1
Overview of classical and parameterized complexity results for control in Bucklin and fallback voting shown in [16]. All results hold in both the co-winner 
and the unique-winner model. Key: I = immune, S = susceptible, R = resistant, R∗ = parameterizedly resistant, V = vulnerable, TE = ties eliminate, and 
TP = ties promote.

Control by Fallback voting Bucklin voting

Constructive Destructive Constructive Destructive

Adding Candidates R∗ R∗ R∗ R∗
Adding Candidates unlimited R R R R
Deleting Candidates R∗ R∗ R∗ R∗
Partition of Candidates – TE R

R
R

R
Run-off Partition of Candidates – TE R R
Partition of Candidates – TP R

R
R

R
Run-off Partition of Candidates – TP R R
Adding Voters R∗ V R∗ V
Deleting Voters R∗ V R∗ V
Partition of Voters – TE R R R R
Partition of Voters – TP R R R S

for the running time of the implemented algorithms. To realize our experiments in an acceptable time frame, we confine 
ourselves to the cases of k = �m/3� and k = �n/3�, respectively, where m is the number of candidates and n is the number 
of voters. This restriction of the parameter k has a purely practical purpose needed to realize our experimental approach. 
As we will see later in the high-level description of our algorithms, we tackle the task of solving instances of NP-hard 
problems by exhaustively testing every subset up to size k on whether adding/deleting it is a successful control action. 
On the positive side, we have that a yes-instance for a given k is also a yes-instance for each k′ ≥ k, so the number of 
yes-instances found in our experiments for smaller k directly transfers to instances with bigger values of k. On the negative 
side, if no successful control actions could be found for a given k, we cannot make conclusions for the same election with 
a bigger value of k.

For similar reasons, as we have to cope with NP-hard problems, a time limit of ten minutes has been implemented 
such that the algorithm stops when exceeding this limit, indicating by the output “timeout” that the search process is 
aborted unsuccessfully. Again, this allows us to handle the worst-case scenarios in a reasonable amount of time. In our 
experiments we implemented the same timeout value for all investigated types of control. As our results will show, the 
different control types react differently to this constant timeout threshold, so a tuning of the timeout-parameter would be 
an interesting issue for further experiments. Also, varying the timeout value depending on the election size at hand might 
be an interesting approach.

We randomly generated elections (C, V ) with m = ‖C‖ and n = ‖V ‖ for all combinations of n and m chosen from 
{4, 8, 16, 32, 64, 128}. In the adding-candidates and adding-voters scenarios, the spoiler sets D and V ′ have the same size as 
the set of registered candidates and voters, respectively; i.e., ‖D‖ = ‖C‖ and ‖V ′‖ = ‖V ‖. Each such combination of n and 
m is one data point for which we evaluated 500 of these elections, trying to determine for each given election whether or 
not control is possible, and if it is possible, we say that this election is controllable. This restriction to 500 elections per data 
point, again, results from practical issues balancing out manageability and informative value of the experiments conducted.

The algorithms and data-generation programs are implemented in Octave 3.2 and the experiments were run on a 
2.67 GHz Core-I5 750 with 8 GB RAM.

3.1. Election generation and distributions of votes

Before we specify the different distribution models underlying our election generation, we explain how random votes can 
be cast in the considered voting systems and how many different votes can exist. Assuming that the generated election has 
m candidates, in Bucklin voting a random vote can be obtained by generating a random permutation over the m different 
candidates, so the overall number of different votes in Bucklin elections is m!. In fallback voting, random votes can be 
generated as follows:

• randomly draw a preference p from all m! possible preferences with m candidates;
• randomly draw a number, say � ∈ {0, 1, . . . , m}, of approved candidates;
• the generated vote consists of the first � candidates in p.

Thus, there can be 
∑m

�=0

(m
�

)
�! different votes in fallback elections with m candidates.

We now turn to the distribution models and we start with the general Pólya–Eggenberger urn model (PE model), see [5], in 
which a set of votes is sampled in the following way: Assume that we have an urn containing all possible votes that can be 
cast given a certain voting system and let the number of different votes be denoted by t . For Bucklin voting, for example, 
t = m!, while for fallback voting we have that t = ∑m

�=0

(m
�

)
�!, as explained above. To sample an electorate consisting of n

votes, we proceed in the following way for a fixed parameter b:



664 G. Erdélyi et al. / Journal of Computer and System Sciences 81 (2015) 661–670
• randomly draw one preference from the given urn—this is the first of the n votes that shall be sampled,
• put the preference back into the urn along with b additional copies of it,
• randomly draw the second vote from the new urn,
• put the second vote back into the urn along with b additional copies of it,

.

.

.

• randomly draw the (n − 1)st vote from the new urn,
• put the (n − 1)st vote back into the urn along with b additional copies of it,
• randomly draw the nth vote from the new urn.

The correlation of the sampled votes strongly depends on the parameter b. By setting b = 0, we obtain the Impartial Culture 
model (IC model) which samples uniformly distributed votes out of all possible preferences since in each step the just drawn 
preference is put back into the urn without adding any more preferences.

To sample correlated votes, the usual approach (also employed by, e.g., Walsh [38]) is to use the above model with 
the parameter b = t . This means that when the first preference is drawn from the urn, it is put back into the urn along 
with t additional copies, leading to a probability of 0.5 that the second preference will be the same as the first one and, 
depending on the preferences that are drawn in each step, this effect can be intensified during the sampling process. Thus, 
there is a relatively high probability that many (or even all) sampled votes can be identical. In the setting of manipulation, 
where the preferences of the manipulators can be freely set independently of the nonmanipulators’ preferences, this effect 
has less impact while in the control scenarios considered in this work, identical preferences of the voters (including e.g., 
unregistered votes that may be added), would artificially make control impossible or easy to find and thus would trivialize 
the problem.

Therefore, we introduce the Two Mainstreams model (TM model), which is the following adaption of the PE model when 
sampling correlated votes in our experiments:

• depending on the voting system, randomly draw two preferences out of an urn containing all possible, say t , 
preferences—recall that either t = m! (for Bucklin) or t = ∑m

�=0

(m
�

)
�! (for fallback);

• put each preference back into the urn with t additional copies;
• draw the votes out of this urn independently at random with replacement.

Each of the two preferences drawn in the first step can be interpreted as a representative of one “mainstream” in society 
(e.g., liberal and conservative).

3.2. A high-level description of the algorithms

Our algorithms are greedy heuristics, designed so as to test the most “promising” cases (depending on the control type 
at hand) first, by using appropriate preorderings. We only provide a high-level description. All algorithms for the different 
types of control share the same essential method of testing various subsets, and they differ only in the type of preordering 
and internal testing. Before actually searching for a successful sublist of voters or subset of candidates, the algorithms check 
conditions that, if true, indicate that the given instance is a no-instance. Let c be the designated candidate in the control 
problems defined in the companion paper [16]. Depending on the control type, some of the following conditions are tested:

Condition 1 (applied to all constructive cases): The designated candidate is ranked last (for Bucklin), or is ranked last or 
disapproved (for fallback), in every vote.

Condition 2 (applied to control by deleting voters): For each k′ ≤ k, determine the smallest i and j such that

scorei
(C,V )(c′) ≥ ⌊(‖V ‖−k′)/2

⌋ + 1 + k′ and score j
(C,V )(c) ≥ ⌊(‖V ‖−k′)/2

⌋ + 1

hold for c′ ∈ C − {c}. Note that i ≤ j − 1 for all k′ ≤ k.
Condition 3 (applied to control by adding voters): For each k′ ≤ k determine the smallest i and j such that

scorei
(C,V )(c′) ≥ ⌊(‖V ‖ + k′)/2

⌋ + 1 and score j
(C,V )(c) ≥ ⌊(‖V ‖ + k′)/2

⌋ + 1 − k′

hold for c′ ∈ C − {c}. Note that i ≤ j − 1 for all k′ ≤ k.
Condition 4 (applied to all destructive cases): In the given election, the winner has a strict majority on the first level al-

ready.

Condition 1 (respectively, Condition 4) is tested for every constructive (respectively, destructive) control type investigated 
here. Note that these conditions are checked in the election for both the registered and the unregistered voters for control 
by adding voters, and both for the original and the spoiler candidates for control by adding candidates. Condition 2 is 
additionally tested in the deleting-voters cases and tries to find the smallest level i on which another candidate than the 
designated one would still have a strict majority in the election with the reduced voter list even if he or she lost points 



G. Erdélyi et al. / Journal of Computer and System Sciences 81 (2015) 661–670 665
Fig. 1. Tree for n = 5 voters where up to k = 3 voters may be deleted. A node i corresponds to voter vi after the preordering.

on this level from every voter that has been deleted. Moreover, we search for the smallest level j on which the designated 
candidate c reaches a strict majority in the election after the voters have been deleted if he or she is not harmed at all 
by the deleted voters. This is done for all possible numbers of deleted voters. If i < j for all possible numbers of deleted 
voters, c is hopeless since there will always be a candidate reaching a strict majority before c. Condition 3 checks whether 
an analogous situation occurs when voters are added and is thus tested for the adding-voters cases only.

After having excluded these trivial cases, each of the algorithms searches for a successful sublist/subset of preordered 
versions of V or C . Let us describe this procedure only for constructive control by deleting voters in detail. In this case, the 
voters are preordered ascendingly for c; that is, after the preordering v1 is a voter ranking c worst and vn is a voter ranking 
c best among all voters. (In fallback voting, the “worst” position for a candidate is to be not approved at all.) The algorithm 
now starts with deleting those votes c benefits least of. It follows the procedure of a depth-first search on a tree of height k
that is structured as shown in Fig. 1. In each node, it is tested whether deleting the votes on the path is a successful control 
action. For example, on path s → 1 → 2 → 3 the algorithm tests the sublists (v1), (v1, v2), (v1, v2, v3) and then tracks back 
testing the sublists (v1, v2, v4), (v1, v2, v5), (v1, v3), (v1, v3, v4), and so on. The branches on the left side are visited first 
and, due to the preordering of the votes, these are the votes c benefits least of.

For the adding-voters cases, the unregistered voters are ordered in a descending order for the designated candidate, and 
the algorithm proceeds similarly as the algorithm for the deleting-voters cases. With this preordering, the algorithm first 
tests those voters the designated candidate can benefit most from when these are added to the voter list.

For the partition-of-voters cases, the algorithm considers every possible sublist of the voter list up to size k = �n/2� as V 1, 
sets V 2 = V − V 1, and tests whether this is a successful control action or not. For the constructive cases, the voters are 
preordered descendingly with respect to the designated candidate, whereas for the destructive control cases no preordering 
is implemented.

In the candidate control scenarios, the candidates are also ordered with respect to the designated candidate, where a de-
scending order here means that the first candidate has the most voters ranking him or her before the designated candidate 
and the last candidate has the fewest voters doing so. An ascending order is defined analogously. Again, in the adding-
candidates case, the votes over all candidates (including the spoiler candidates) are considered. A descending ordering is 
used for finding control actions for constructive control by deleting candidates and for destructive control by adding candi-
dates, whereas for the remaining candidate control cases an ascending order is used.

In the worst case, our algorithms check all possible subsets of size k, so they have a worst-case running time of 
∑k

�=1

(n
�

)

for voter control and 
∑k

�=1

(m
�

)
for candidate control, where n is the number of voters and m is the number of candidates. 

Finally, note that for each yes-answer, our algorithms also provide the corresponding successful control action.

4. Summary of experimental results

Table 2 summarizes our experimental results on control in Bucklin and fallback voting. We investigated the two voting 
systems only for those control types they are not known to be vulnerable to, which is indicated by an R∗-, R-, or an S-entry 
in Table 1. That is, destructive control by adding and by deleting voters (DCAV and DCDV) are omitted in Table 2. Also, since 
our algorithms use the parameter k bounding the number of candidates to be added, constructive and destructive control by 
adding an unlimited number of candidates (CCAUC and DCAUC) are not considered either. For each combination of any of 
the remaining 18 control types, any of the two voting systems (Bucklin and fallback voting), and any of the two distribution 
models (IC and TM), we tested a total of 18, 000 = 36 · 500 elections, varying over the 36 data points with different values 
for m and n, as explained above. This gives a total of 1, 296, 000 = 18 · 4 · 18, 000 generated and tested elections.

Table 2 gives an overview of the percentage of timeouts for each such combination of control type/voting system/distri-
bution model, and also the minimal and maximal percentage of yes-instances observed. We do not discuss the results for 
all these cases in detail here. Rather, we will focus on adding/deleting/partitioning of voters to very briefly discuss some 
observations from our experiments, to exemplify some of the numbers in Table 2. For those cases that we discuss in detail, 
we provide plots giving the percentage of yes-instances, timeouts, and average computational costs for all different election 
sizes that were tested. Note that a comprehensive presentation of all results obtained so far containing the above informa-
tion for all cases (showing 168 plots of experiments in total) can be found in the appendix of the 370-page technical report 
by Rothe and Schend [33], who in addition to Bucklin and fallback voting conducted experiments for plurality voting.



666 G. Erdélyi et al. / Journal of Computer and System Sciences 81 (2015) 661–670
Table 2
Overview of experimental results on control in Bucklin and fallback voting. Key: The “min” and “max” columns give the minimal and maximal percentage of 
yes-instances observed in all tested instances for the given control type, including those elections where timeouts occurred; “timeout” gives the percentage 
of timeouts that occurred for the total of 18,000 elections tested in this control case.

Fallback voting Bucklin voting

min max timeout min max timeout

IC TM IC TM IC TM IC TM IC TM IC TM

CCAC 1 0 11 7 51 50 0 0 23 11 50 49
DCAC 53 39 92 71 11 14 71 42 99 77 6 12
CCDC 13 15 33 36 37 37 13 17 58 45 34 37
DCDC 8 12 78 63 15 22 48 25 99 77 7 18
CCPC-TE 0 0 19 18 62 64 1 0 57 37 57 62
DCPC-TE 8 16 88 65 18 29 49 29 100 78 10 23
CCPC-TP 1 0 17 17 62 64 1 0 60 38 57 61
DCPC-TP 8 16 87 61 18 29 49 29 100 82 9 23
CCRPC-TE 1 1 18 14 62 63 1 0 60 45 57 62
DCRPC-TE 8 16 86 68 20 29 46 29 100 84 9 23
CCRPC-TP 1 0 19 14 62 63 1 1 56 25 53 61
DCRPC-TP 8 16 85 68 21 29 45 27 100 81 10 23
CCAV 4 1 99 41 13 13 2 1 99 41 11 6
CCDV 2 1 97 39 16 12 2 1 100 42 11 7
CCPV-TE 2 0 97 34 9 45 2 0 98 32 8 44
DCPV-TE 50 34 100 88 4 16 64 40 100 89 4 10
CCPV-TP 1 1 53 20 40 50 1 0 72 23 31 48
DCPV-TP 37 27 100 87 6 17 60 39 100 88 3 10

4.1. Adding and deleting voters

We here briefly discuss some results for control by deleting voters only, since those for control by adding voters are very 
similar, in both Bucklin and fallback voting. Fig. 2 shows the results for control by deleting voters for Bucklin voting in the 
IC model and in detail we have the percentage of yes-instances in Fig. 2a, where the highest percentage of 100 % and the 
lowest percentage of 2 % can also be seen in the “max” and “min” column in Table 2. Fig. 2b gives the detailed occurrence 
of timeouts for the different election sizes and Fig. 2c shows the average time needed to determine whether a given Bucklin 
election generated under the IC model can be controlled by deleting voters or not. Remember that in the latter figure the 
average values do not consider those elections where the algorithm exceeded the time limit of 600 seconds.

In the IC model, increasing the number of candidates decreases the number of yes-instances in the generated Bucklin 
elections. On the other hand, the number of yes-instances increases as the number of voters grows. In the TM model, the 
same correlations can be observed but here, again, the total number and percentage of yes-instances is smaller than in the 
IC model.

Fallback voting behaves very similarly, so for both distributions and both voting systems increasing the number of can-
didates makes successful control actions by deleting voters less likely.

In both voting systems and in both distribution models, timeouts occur whenever the number of voters exceeds 32. If 
the number of candidates is 128, we have timeouts already with 16 voters. This can also be seen in the development of the 
computational costs shown in Fig. 2c after the peak for n = 16. For larger electorates, the average computational costs drop, 
since the number of timeouts increases as the number of no-instances diminishes.

4.2. Partition of voters

As mentioned in [16, Section 2], control by partition of voters comes in four problem variants, where each case must be 
investigated separately. We very briefly discuss some observations made for these control types.

For constructive control by partition of voters in model TP we made the following observations: Similarly to control by 
deleting or by adding voters, the number of controllable elections increases as the number of voters increases. This was 
observed for both voting systems investigated. Using the tie-handling model TE instead of TP, in both Bucklin and fallback 
voting an increase of yes-instances in the constructive cases is evident. By contrast, in the destructive counterparts no 
significant difference can be observed with respect to the tie-handling rule used.

The most striking results are those obtained for the destructive cases. Here we have that, for both tie-handling models 
in the TM model, the average number of controllable elections is very high; and in the IC model, control is almost always 
possible, see Fig. 3. In light of the fact that for these cases the resistance proofs of Theorems 3.19, 3.21, and 3.25 in [16]
tend to be the most involved ones (yielding the most complex instances for showing NP-hardness), these results might be 
surprising at first glance. However, one explanation for the observed results can be found in exactly this fact: The elections 
constructed in these reductions have a very complex structure which seems to be unlikely to occur in randomly generated 
elections (at least in elections generated under the distribution models discussed in this paper). Another explanation is that 
the problems used to reduce from in these proofs tend to be easy to solve for small input sizes, but due to the complexity 



G. Erdélyi et al. / Journal of Computer and System Sciences 81 (2015) 661–670 667
m\n 4 8 16 32 64 128

4 0 0 0 10 3 1
8 0 0 0 20 7 0

16 0 0 0 23 19 3
32 0 0 0 39 27 4
64 0 0 1 49 38 17

128 0 0 31 53 47 17

(a) Percentage of yes-instances. (b) Percentage of timeouts.

(c) Average time the algorithm needs to give a definite output, instances where timeouts 
occur are excluded.

Fig. 2. Bucklin voting in the IC model for CCDV.

of the reduction, the resulting elections have many voters/candidates compared to the elections generated for the conducted 
experiments.

In the destructive cases, the number of timeouts is for both voting systems the lowest among all control types investi-
gated. In Bucklin elections with uniformly distributed votes and for destructive control by partition of voters in model TP, 
for only 3.32 % of the elections no decision can be made within the time limit. As can be seen in the table, timeouts begin 
to occur for those elections where the number of voters exceeds 16. But, again, we have to emphasize that these values are 
very low compared to other types of control. This explains the plateaus all graphs show. On the one hand, increasing the 
number of voters increases the number of yes-instances. But on the other hand, for more than 16 voters timeouts begin to 
diminish the fraction of observed yes-instances. Also, the average running time of the algorithm for those instances where 
the time limit is not exceeded is rather low, compared to other types of control, see Fig. 3c. The highest computational costs 
occur for those election sizes where the most no-instances were observed. As expected, in the corresponding constructive 
cases the number of timeouts is significantly higher and so are the average computational costs.

4.3. Discussion and comparison of voting systems, control types, and distribution models

Finally, we summarize the main findings of our experiments, which allow a more fine-grained analysis and comparison—
across various control scenarios, vote distribution models, and voting systems—than merely stating NP-hardness for all these 
problems. Obviously, our findings are limited by the experimental setup and, of course, the fact that exponential time seems 
unavoidable for these problems unless P = NP; thus, our conclusions cannot be generalized unconditionally.

Distribution models: IC versus TM Comparing the results for the different distribution models, we see that in every voting 
system for all control types studied (except fallback voting in constructive control by deleting candidates) the overall number 
of yes-instances is higher in the IC than in the TM model. This may result from the fact that in elections with uniformly 
distributed votes, all candidates are likely to be approximately equally preferred by the voters. So both constructive and 
destructive control actions are easier to find by our greedy algorithms. This also explains the observation that the IC model 
produces fewer timeouts.



668 G. Erdélyi et al. / Journal of Computer and System Sciences 81 (2015) 661–670
m\n 4 8 16 32 64 128

4 0 0 0 18 40 61
8 0 0 0 3 15 29

16 0 0 0 1 5 15
32 0 0 0 0 3 9
64 0 0 0 0 1 5

128 0 0 0 0 1 1

(a) Percentage of yes-instances. (b) Percentage of timeouts.

(c) Average time the algorithm needs to give a definite output, instances where timeouts 
occur are excluded.

Fig. 3. Fallback voting in the IC model for DCPV-TP.

Constructive versus destructive control For all investigated types of control where both constructive and destructive control 
was investigated, we found that the destructive control types are experimentally much easier than their constructive coun-
terparts, culminating in almost 100 % of controllable elections for certain control types in the IC model. Compare this with 
the theoretical insight of Hemaspaandra et al. [23] that (unique-winner) destructive control problems disjunctively truth-
table-reduce to their (co-winner) constructive counterparts and thus are never harder to solve, up to a polynomial factor 
(see also the corresponding observation of Conitzer et al. [10] regarding manipulation): In fact, destructive control tends to 
be even much easier than constructive control in our experiments.

Comparison across voting systems For constructive control, we have seen that fallback and Bucklin voting show similar ten-
dencies and numbers of yes-instances regarding voter control. Bucklin voting tends to have more controllable elections in 
candidate control. In both voting systems, constructive control by partition of candidates seems to be the hardest control 
problem investigated, at least for our algorithms, as the most timeouts have occurred in these cases.

Adding candidates/voters versus deleting candidates/voters For fallback and Bucklin voting, we have seen that the results for 
control by adding voters do not differ significantly from those observed for control by deleting voters, suggesting that 
both types of control are roughly equally hard. By contrast, comparing control by adding candidates to control by deleting 
candidates in the constructive case leads to different findings. In both voting systems and both control types, we have small 
numbers of yes-instances. In the constructive case, however, we observed that the number of yes-instances for control by 
deleting candidates is significantly higher. These findings are perhaps not overly surprising, since in the voting systems 
considered here adding candidates to an election can only worsen the position of the designated candidate in the votes. 
That is, constructive control can be exerted successfully only if by adding candidates rivals of the designated candidate lose 
enough points so as to get defeated by him or her. This, in turn, can happen only if the designated candidate was already a 
highly preferred candidate in the original election.

Constructive voter versus candidate control For fallback and Bucklin voting, we can also compare constructive candidate and 
voter control directly. In both voting systems and both distribution models, the number of yes-instances for constructive 



G. Erdélyi et al. / Journal of Computer and System Sciences 81 (2015) 661–670 669
control by adding voters is around four times higher than the number of yes-instances in the corresponding candidate con-
trol type, which confirms the argument above, saying that adding candidates cannot push the designated candidate directly. 
Constructive control by deleting voters can be successfully exerted more frequently when votes are less correlated, whereas 
the proportion of successful control actions for deleting candidates is about the same for both considered distribution mod-
els. The observed differences between these types of voter and candidate control may result from the fact that adding or 
deleting candidates only shifts the position of the designated candidate, which may not influence the outcome of the elec-
tion as directly as increasing or decreasing the candidates’ scores by adding or deleting voters does. This may explain why 
voter control can be tackled more easily than candidate control by greedy approaches such as ours.

5. Conclusions and open questions

Reviewing the results obtained from our experiments, we can roughly group the investigated control types in three 
different categories:

1. For all destructive control cases, we could show that for instances randomly generated with either of the voter dis-
tribution models considered here, the control problems are easily solvable by our greedy approach. This suggests that 
the NP- and W[2]-hardness results from [16] for these cases describe solely the worst-case behavior and do not give 
information about the complexity for typical instances, assuming the used voter distribution models do give “typical” 
instances.
For constructive voter control by adding, deleting, or partitioning in model TE, we have to distinguish between the two 
types of input instances. For uniformly distributed electorates, we have seen that these control actions can also be easily 
computed by our greedy approach, whereas for instances with correlated votes the problems become harder to solve. 
So the complexity of these problems in practice depends immensely on the given instance’s structure. These problems 
cannot be grouped into some specific category, as they fall somewhere between the first and the second category.

2. The second category classifies those problems that are at least for small election sizes efficiently solvable in our setting. 
This category contains the constructive cases of control by deleting candidates and partition of voters in model TP. For 
these problems our experiments show that for very small instances the problems are in practice easy to solve, but the 
worst case that is reflected by the theoretical hardness results is likely to occur even for random instances (according 
to IC and TM) when their size increases.

3. The remaining cases of constructive candidate control (namely, adding candidates and all variants of partition of can-
didates) form the third and last category in which we collect those control problems that are hard to solve by our 
algorithms for all considered instance sizes and structures. For these problems, our experiments may allow the conclu-
sion that these problems seem to be hard to solve even in practice and on random instances (according to IC and TM).

Summarizing our results, we have seen that the natural parameterization by the number of deleted/added voters might 
not be fine-grained or expressive enough to give information about the behavior of instances actually occurring in practice. 
Even though parameterized complexity offers a more differentiated worst-case analysis with respect to the considered 
parameter than NP-hardness, we have seen that a further experimental analysis can provide further insights.

From an experimental perspective, this paper has done the first step. The next step would be to do empirical studies 
based on real-world election data instead of mere simulations of randomly generated elections.

Just as Walsh [37,38] observes for manipulation in the veto rule and in STV, for all types of control investigated in our 
experiments, the curves do not show the typical phase transition known for “really hard” computational problems such as 
the satisfiability problem (see [22,7] for a detailed discussion of this issue). These observations raise the question of how 
other distribution models influence the outcome of such experiments. Furthermore, the algorithms implemented could be 
improved in terms of considering a higher number of elections per data point, increasing the election sizes, or allowing a 
higher number of voters or candidates to be deleted or added in the corresponding control scenarios. For a more detailed 
analysis of the behavior of the parameterized problem variants, the parameter considered here, namely the number of voters 
or candidates that can be added or deleted, could be varied in future experiments. Besides this, other voting systems can 
be analyzed easily using modifications of our algorithms, since only their winner determination has to be implemented in 
addition to a few minor adjustments such as trivial-case checks for the investigated control scenarios tailored to the voting 
system at hand.

Acknowledgments

We thank the anonymous JCSS and SEA-2012 referees for their very helpful comments and suggestions. We thank Toby 
Walsh for interesting discussions on experimental studies of voting systems, Volker Aurich for giving us access to his com-
puter lab, and Guido Königstein for his help in setting up our experiments. This work was supported in part by DFG grants 
ER 738/2-1, RO 1202/11-1, RO 1202/12-1, and RO 1202/15-1, by the European Science Foundation’s EUROCORES program 
LogICCC, by the National Research Foundation (Singapore) under grant NRF-RF 2009-08, and by SFF grant “Cooperative 
Normsetting” of HHU Düsseldorf. This work was done in part while the first author was affiliated to Heinrich-Heine-
Universität Düsseldorf and to Nanyang Technological University, Singapore, and while he was visiting Universität Trier, while 



670 G. Erdélyi et al. / Journal of Computer and System Sciences 81 (2015) 661–670
the third author was visiting Stanford University and the University of Rochester, and while the first and third authors were 
visiting NICTA, Sydney, and the University of Newcastle in Australia, and we thank our hosts for their hospitality.

References

[1] E. Baharad, Z. Neeman, The asymptotic strategyproofness of scoring and condorcet consistent rules, Rev. Econ. Des. 7 (3) (2002) 331–340.
[2] J. Bartholdi III, J. Orlin, Single transferable vote resists strategic voting, Soc. Choice Welf. 8 (4) (1991) 341–354.
[3] J. Bartholdi III, C. Tovey, M. Trick, The computational difficulty of manipulating an election, Soc. Choice Welf. 6 (3) (1989) 227–241.
[4] J. Bartholdi III, C. Tovey, M. Trick, How hard is it to control an election? Math. Comput. Model. 16 (8/9) (1992) 27–40.
[5] S. Berg, Paradox of voting under an urn model: The effect of homogeneity, Public Choice 47 (2) (1985) 377–387.
[6] S. Brams, R. Sanver, Voting systems that combine approval and preference, in: S. Brams, W. Gehrlein, F. Roberts (Eds.), The Mathematics of Preference, 

Choice, and Order: Essays in Honor of Peter C. Fishburn, Springer, 2009, pp. 215–237.
[7] P. Cheeseman, B. Kanefsky, W. Taylor, Where the really hard problems are, in: Proceedings of the 13th International Joint Conference on Artificial 

Intelligence, Morgan Kaufmann, 1991, pp. 331–337.
[8] T. Coleman, V. Teague, On the complexity of manipulating elections, in: Proceedings of Computing: The 13th Australasian Theory Symposium, vol. 65, 

2007, pp. 25–33.
[9] V. Conitzer, Making decisions based on the preferences of multiple agents, Commun. ACM 53 (3) (2010) 84–94.

[10] V. Conitzer, T. Sandholm, J. Lang, When are elections with few candidates hard to manipulate? J. ACM 54 (3) (2007), Article 14.
[11] J. Davies, G. Katsirelos, N. Narodytska, T. Walsh, An empirical study of Borda manipulation, in: V. Conitzer, J. Rothe (Eds.), Proceedings of the 3rd 

International Workshop on Computational Social Choice, Universität Düsseldorf, September 2010, pp. 91–102.
[12] J. Davies, G. Katsirelos, N. Narodytska, T. Walsh, Complexity of and algorithms for Borda manipulation, in: Proceedings of the 25th AAAI Conference on 

Artificial Intelligence, AAAI Press, August 2011, pp. 657–662.
[13] S. Dobzinski, A. Procaccia, Frequent manipulability of elections: The case of two voters, in: Proceedings of the 4th Workshop on Internet & Network 

Economics, in: Lecture Notes in Computer Science, vol. 5385, Springer-Verlag, December 2008, pp. 653–664.
[14] G. Erdélyi, L. Hemaspaandra, J. Rothe, H. Spakowski, Frequency of correctness versus average polynomial time, Inf. Process. Lett. 109 (16) (2009) 

946–949.
[15] G. Erdélyi, L. Hemaspaandra, J. Rothe, H. Spakowski, Generalized juntas and NP-hard sets, Theor. Comput. Sci. 410 (38–40) (2009) 3995–4000.
[16] G. Erdélyi, M. Fellows, J. Rothe, L. Schend, Control complexity in Bucklin and fallback voting: A theoretical analysis, J. Comput. Syst. Sci. 81 (4) (2015) 

632–660, in this issue.
[17] P. Faliszewski, A. Procaccia, AI’s war on manipulation: Are we winning? AI Mag. 31 (4) (2010) 53–64.
[18] P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, J. Rothe, A richer understanding of the complexity of election systems, in: S. Ravi, S. Shukla (Eds.), 

Fundamental Problems in Computing: Essays in Honor of Professor Daniel J. Rosenkrantz, Springer, 2009, pp. 375–406, chapter 14.
[19] P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, J. Rothe, Llull and Copeland voting computationally resist bribery and constructive control, J. Artif. 

Intell. Res. 35 (2009) 275–341.
[20] P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, Using complexity to protect elections, Commun. ACM 53 (11) (2010) 74–82.
[21] E. Friedgut, G. Kalai, N. Nisan, Elections can be manipulated often, in: Proceedings of the 49th IEEE Symposium on Foundations of Computer Science, 

IEEE Computer Society, October 2008, pp. 243–249.
[22] I. Gent, T. Walsh, Phase transitions from real computational problems, in: Proceedings of the 8th International Symposium on Artificial Intelligence, 

1995, pp. 356–364.
[23] E. Hemaspaandra, L. Hemaspaandra, J. Rothe, Anyone but him: The complexity of precluding an alternative, Artif. Intell. 171 (5–6) (2007) 255–285.
[24] E. Hemaspaandra, L. Hemaspaandra, C. Menton, Search versus decision for election manipulation problems, in: Proceedings of the 30th International 

Symposium in Theoretical Aspects of Computer Science, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, February 2013, pp. 377–388.
[25] M. Isaksson, G. Kindler, E. Mossel, The geometry of manipulation: A quantitative proof of the Gibbard–Satterthwaite theorem, in: Proceedings of the 

51st IEEE Symposium on Foundations of Computer Science, IEEE Computer Society, October 2010, pp. 319–328.
[26] L. Levin, Average case complete problems, SIAM J. Comput. 15 (1) (1986) 285–286.
[27] E. Mossel, A. Procaccia, M. Rácz, A smooth transition from powerlessness to absolute power, J. Artif. Intell. Res. 48 (2013) 923–951.
[28] N. Narodytska, T. Walsh, L. Xia, Manipulation of Nanson’s and Baldwin’s rules, in: Proceedings of the 25th AAAI Conference on Artificial Intelligence, 

AAAI Press, August 2011, pp. 713–718.
[29] B. Peleg, A note on manipulability of large voting schemes, Theory Decis. 11 (4) (1979) 401–412.
[30] A. Procaccia, J. Rosenschein, Junta distributions and the average-case complexity of manipulating elections, J. Artif. Intell. Res. 28 (2007) 157–181.
[31] J. Rothe, L. Schend, Control complexity in Bucklin, fallback, and plurality voting: An experimental approach, in: Proceedings of the 11th International 

Symposium on Experimental Algorithms, in: Lecture Notes in Computer Science, Springer-Verlag, June 2012, pp. 356–368.
[32] J. Rothe, L. Schend, Typical-case challenges to complexity shields that are supposed to protect elections against manipulation and control: A survey, 

in: Website Proceedings of the Special Session on Computational Social Choice at the 12th International Symposium on Artificial Intelligence and 
Mathematics, January 2012, pp. 161–193.

[33] J. Rothe, L. Schend, Control complexity in Bucklin, fallback, and plurality voting: An experimental approach, Technical Report, March 2012, 
arXiv:1203.3967 [cs.GT], Computing Research Repository, arXiv.org/corr/, March 2012. Revised August, 2012.

[34] L. Schend, G. Erdélyi, J. Rothe, Control complexity in Bucklin and fallback voting: A theoretical and experimental analysis, in: E. Elkind, C. Klamler, 
J. Rosenschein, R. Sanver (Eds.), Dagstuhl Seminar 12101: “Computation and Incentives in Social Choice”. Dagstuhl Seminar Proceedings, March 2012.

[35] A. Slinko, On asymptotic strategy-proofness of classical social choice rules, Theory Decis. 52 (4) (2002) 389–398.
[36] A. Slinko, How large should a coalition be to manipulate an election? Math. Soc. Sci. 47 (3) (2004) 289–293.
[37] T. Walsh, Where are the really hard manipulation problems? The phase transition in manipulating the veto rule, in: Proceedings of the 21st Interna-

tional Joint Conference on Artificial Intelligence, IJCAI, July 2009, pp. 324–329.
[38] T. Walsh, An empirical study of the manipulability of single transferable voting, in: Proceedings of the 19th European Conference on Artificial Intelli-

gence, IOS Press, August 2010, pp. 257–262.
[39] L. Xia, V. Conitzer, Generalized scoring rules and the frequency of coalitional manipulability, in: Proceedings of the 9th ACM Conference on Electronic 

Commerce, ACM Press, June 2008, pp. 109–118.
[40] L. Xia, V. Conitzer, A sufficient condition for voting rules to be frequently manipulable, in: Proceedings of the 9th ACM Conference on Electronic 

Commerce, ACM Press, June 2008, pp. 99–108.
[41] L. Xia, V. Conitzer, A. Procaccia, A scheduling approach to coalitional manipulation, in: Proceedings of the 11th ACM Conference on Electronic Com-

merce, ACM Press, June 2010, pp. 275–284.
[42] M. Zuckerman, A. Procaccia, J. Rosenschein, Algorithms for the coalitional manipulation problem, Artif. Intell. 173 (2) (2009) 392–412.

http://refhub.elsevier.com/S0022-0000(14)00144-5/bib6261682D6E65653A6A3A6173796D70746F7469632D737472617465677970726F6F666E657373s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib6261722D6F726C3A6A3A706F6C7363693A7374726174656769632D766F74696E67s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib6261722D746F762D7472693A6A3A6D616E6970756C6174696E67s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib6261722D746F762D7472693A6A3A636F6E74726F6Cs1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib6265723A6A3A70617261646F782D75726E2D6D6F64656Cs1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib6272612D73616E3A6A3A707265666572656E63652D617070726F76616C2D766F74696E67s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib6272612D73616E3A6A3A707265666572656E63652D617070726F76616C2D766F74696E67s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib6368652D6B616E2D7461793A633A7265616C6C792D686172642D70726F626C656D73s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib6368652D6B616E2D7461793A633A7265616C6C792D686172642D70726F626C656D73s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib636F6C2D7465613A633A636F6D706C65786974792D6F662D6D616E6970756C6174696E672D656C656374696F6E73s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib636F6C2D7465613A633A636F6D706C65786974792D6F662D6D616E6970756C6174696E672D656C656374696F6E73s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib636F6E3A6A3A6D616B696E672D6465636973696F6E73s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib636F6E2D73616E2D6C616E3A6A3A7768656E2D686172642D746F2D6D616E6970756C617465s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib6461762D6B61742D6E61722D77616C3A633A656D7069726963616C2D73747564792D626F7264612D6D616E6970756C6174696F6Es1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib6461762D6B61742D6E61722D77616C3A633A656D7069726963616C2D73747564792D626F7264612D6D616E6970756C6174696F6Es1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib6461762D6B61742D6E61722D77616C3A633A636F6D706C65786974792D616E642D616C676F726974686D732D666F722D626F726461s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib6461762D6B61742D6E61722D77616C3A633A636F6D706C65786974792D616E642D616C676F726974686D732D666F722D626F726461s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib646F622D70726F3A633A6672657175656E742D6D616E6970756C6162696C6974792D74776F2D766F74657273s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib646F622D70726F3A633A6672657175656E742D6D616E6970756C6162696C6974792D74776F2D766F74657273s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib6572642D68656D2D726F742D7370613A6A3A6672657175656E63792D6F662D636F72726563746E6573732D7665727375732D61766770s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib6572642D68656D2D726F742D7370613A6A3A6672657175656E63792D6F662D636F72726563746E6573732D7665727375732D61766770s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib6572642D68656D2D726F742D7370613A6A3A67656E6572616C697A65642D6A756E746173s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib6572642D66656C2D726F742D7363683A6A3A636F6E74726F6C2D696E2D6275636B6C696E2D616E642D66616C6C6261636B2D766F74696E672D7468656F7265746963616Cs1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib6572642D66656C2D726F742D7363683A6A3A636F6E74726F6C2D696E2D6275636B6C696E2D616E642D66616C6C6261636B2D766F74696E672D7468656F7265746963616Cs1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib66616C2D70726F3A6A3A6D616E6970756C6174696F6Es1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib66616C2D68656D2D68656D2D726F743A623A726963686572s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib66616C2D68656D2D68656D2D726F743A623A726963686572s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib66616C2D68656D2D68656D2D726F743A6A3A6C6C756C6C2D636F70656C616E642D66756C6C2D746563687265706F7274s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib66616C2D68656D2D68656D2D726F743A6A3A6C6C756C6C2D636F70656C616E642D66756C6C2D746563687265706F7274s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib66616C2D68656D2D68656D3A6A3A6361636D2D737572766579s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib6672692D6B616C2D6E69733A633A7175616E746961746976652D6769622D736174s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib6672692D6B616C2D6E69733A633A7175616E746961746976652D6769622D736174s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib67656E2D77616C3A633A70686173652D7472616E732D7265616C2D70726F626C656D73s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib67656E2D77616C3A633A70686173652D7472616E732D7265616C2D70726F626C656D73s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib68656D2D68656D2D726F743A6A3A64657374727563746976652D636F6E74726F6Cs1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib68656D2D68656D2D6D656E3A633A7365617263682D7665727375732D6465636973696F6E2D6D616E692D627269622D636F6E74726F6Cs1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib68656D2D68656D2D6D656E3A633A7365617263682D7665727375732D6465636973696F6E2D6D616E692D627269622D636F6E74726F6Cs1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib6973612D6B696E2D6D6F733A633A67656F6D657472792D6F662D6D616E6970756C6174696F6Es1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib6973612D6B696E2D6D6F733A633A67656F6D657472792D6F662D6D616E6970756C6174696F6Es1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib6C65763A6A3A617665726167652D636173652D636F6D706C657465s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib6D6F732D70726F2D7261633A6A3A736D6F6F74682D7472616E736974696F6E2D706F7765726C6573736E6573732D6162736F6C7574652D706F776572s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib6E61722D77616C2D7869613A633A6D616E6970756C6174696F6E2D6F662D6E616E736F6E2D616E642D62616C6477696Es1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib6E61722D77616C2D7869613A633A6D616E6970756C6174696F6E2D6F662D6E616E736F6E2D616E642D62616C6477696Es1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib70656C3A6A3A6D616E6970756C6162696C6974792D6F662D6C617267652D766F742D736368656D6573s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib70726F2D726F733A6A3A6A756E746173s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib726F742D7363683A633A66616C6C6261636B2D766F74696E672D6578706572696D656E7473s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib726F742D7363683A633A66616C6C6261636B2D766F74696E672D6578706572696D656E7473s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib726F742D7363683A633A7375727665792D7479706963616C2D636173652D6368616C6C656E6765732D6D616E6970756C6174696F6E2D636F6E74726F6Cs1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib726F742D7363683A633A7375727665792D7479706963616C2D636173652D6368616C6C656E6765732D6D616E6970756C6174696F6E2D636F6E74726F6Cs1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib726F742D7363683A633A7375727665792D7479706963616C2D636173652D6368616C6C656E6765732D6D616E6970756C6174696F6E2D636F6E74726F6Cs1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib726F742D7363683A743A66616C6C6261636B2D766F74696E672D6578706572696D656E7473s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib726F742D7363683A743A66616C6C6261636B2D766F74696E672D6578706572696D656E7473s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib7363682D6572642D726F743A633A6275636B6C696E2D66616C6C6261636B2D7468656F7265746963616C2D616E642D6578706572696D656E74616C2D616E616C79736973s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib7363682D6572642D726F743A633A6275636B6C696E2D66616C6C6261636B2D7468656F7265746963616C2D616E642D6578706572696D656E74616C2D616E616C79736973s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib736C693A6A3A6173796D70746F7469632D737472617465677970726F6F666E657373s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib736C693A6A3A636F616C6974696F6E616C2D6D616E6970756C6174696F6Es1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib77616C3A633A70686173652D7472616E736974696F6E2D696E2D6D616E6970756C6174696E672D7665746Fs1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib77616C3A633A70686173652D7472616E736974696F6E2D696E2D6D616E6970756C6174696E672D7665746Fs1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib77616C3A633A656D7069726963616C2D73747564792D6F662D6D616E6970756C6162696C6974792D6F662D535456s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib77616C3A633A656D7069726963616C2D73747564792D6F662D6D616E6970756C6162696C6974792D6F662D535456s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib7869612D636F6E3A633A67656E6572616C2D73636F72696E672D72756C65732D6672657175656E63792D6F662D636F616C6974696F6E616C2D6D616E6970756C6162696C697479s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib7869612D636F6E3A633A67656E6572616C2D73636F72696E672D72756C65732D6672657175656E63792D6F662D636F616C6974696F6E616C2D6D616E6970756C6162696C697479s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib7869612D636F6E3A633A73756666696369656E742D636F6E646974696F6E2D6672657175656E742D6D616E6970756C6162696C697479s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib7869612D636F6E3A633A73756666696369656E742D636F6E646974696F6E2D6672657175656E742D6D616E6970756C6162696C697479s1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib7869612D636F6E2D70726F3A633A7363686564756C696E672D617070726F6163682D746F2D636F616C6974696F6E616C2D6D616E6970756C6174696F6Es1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib7869612D636F6E2D70726F3A633A7363686564756C696E672D617070726F6163682D746F2D636F616C6974696F6E616C2D6D616E6970756C6174696F6Es1
http://refhub.elsevier.com/S0022-0000(14)00144-5/bib7A75632D70726F2D726F733A6A3A636F616C6974696F6E616C2D6D616E6970756C6174696F6Es1

	Control complexity in Bucklin and fallback voting: An experimental analysis
	1 Introduction
	2 Notions and theoretical results from the companion paper [16]
	3 Experimental setup
	3.1 Election generation and distributions of votes
	3.2 A high-level description of the algorithms

	4 Summary of experimental results
	4.1 Adding and deleting voters
	4.2 Partition of voters
	4.3 Discussion and comparison of voting systems, control types, and distribution models

	5 Conclusions and open questions
	Acknowledgments
	References


