
Journal of Computer and System Sciences 81 (2015) 632–660
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Control complexity in Bucklin and fallback voting: 

A theoretical analysis ✩

Gábor Erdélyi a, Michael R. Fellows b, Jörg Rothe c,∗, Lena Schend c

a School of Economic Disciplines, University of Siegen, 57076 Siegen, Germany
b Parameterized Complexity Research Unit, Charles Darwin University, Darwin, NT 0909, Australia
c Institut für Informatik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 December 2012
Received in revised form 30 April 2014
Accepted 5 September 2014
Available online 18 November 2014

Keywords:
Computational social choice
Control complexity
Bucklin voting
Fallback voting
Parameterized complexity
Election systems

Electoral control models ways of changing the outcome of an election via such actions 
as adding, deleting, or partitioning either candidates or voters. To protect elections from 
such control attempts, computational complexity has been used to establish so-called 
resistance results. We show that fallback voting, an election system proposed by Brams 
and Sanver [12] to combine Bucklin with approval voting, displays the broadest control 
resistance currently known to hold among natural election systems with a polynomial-time 
winner problem. We also study the control complexity of Bucklin voting and show that it 
performs almost as well as fallback voting in terms of control resistance. Furthermore, we 
investigate the parameterized control complexity of Bucklin and fallback voting, according 
to several parameters that are often likely to be small for typical instances. In a companion 
paper [28], we challenge our worst-case complexity results from an experimental point of 
view.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Since the seminal paper of Bartholdi et al. [5], the computational complexity of electoral control has been studied for a 
variety of voting systems. Unlike manipulation [4,3,16], which models attempts of strategic voters to influence the outcome 
of an election by casting insincere votes, control models attempts of an external actor, the “chair,” to tamper with an elec-
tion’s participation structure so as to alter its outcome via such actions as adding, deleting, or partitioning either candidates 
or voters. A third way of tampering with the outcome of elections is bribery [32,34], which shares with manipulation the 
feature that votes are being changed, and with control the aspect that an external actor tries to change the outcome of 
an election. (We do not here investigate resistance to bribery.) Faliszewski et al. [35,33] and Conitzer [14] comprehensively 
survey known complexity results for control, manipulation, and bribery for various voting systems; Faliszewski et al. [29]
do so with a focus on manipulation; and Baumeister et al. [6] do so with a particular emphasis on approval voting and its 
variants.

✩ Preliminary versions of parts of this paper appear in the proceedings of Computing: the 16th Australasian Theory Symposium [24], the Third International 
Workshop on Computational Social Choice [23], and the Tenth International Conference on Autonomous Agents and Multiagent Systems [26].
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Elections have been used for preference aggregation not only in the context of politics and human societies, but also 
in artificial intelligence, especially in multiagent systems, and other applied settings in computer science; see, e.g., [22,
42,19]. In general, information increasingly arises from multiple perspectives, and must be collated—one way of thinking 
about election systems that points to the rich range of applications. The investigation of the computational properties of 
voting systems is thus well-motivated and the robustness and resistance to manipulation, control, and bribery in voting 
is of fundamental interest, but how can this be investigated and such desirable properties be established, evidenced, or 
indicated?

In their path-breaking papers, Bartholdi et al. [4,5] proposed to employ computational complexity to explore this issue: 
If the problem of deciding whether an election can be tampered with in the manipulation or control scenario at hand is 
NP-hard, then this is evidence that the system is intrinsically difficult to manipulate or to control in this scenario, because of 
the computational intractability of mounting an attack. In this perspective, a central quest that has emerged in the past two 
decades of research is to find natural voting systems with polynomial-time winner determination that are computationally 
resistant to as many of the common control types as possible, where resistance means that the corresponding control 
problem is NP-hard. Each control type is either constructive (the chair of the election seeks to insure that some favored 
candidate wins) or destructive (the chair seeks to insure that some despised candidate does not win).

We study the control complexity of fallback voting, an election system introduced by Brams and Sanver [12] as a way of 
combining Bucklin and approval voting. We prove that fallback voting is resistant to each of the common types of control 
except two (namely, it is not resistant to destructive control by either adding or deleting voters), and we show that it 
is vulnerable (i.e., the corresponding control problem is in P) to these two control types. With these control resistances, 
fallback voting displays the broadest control resistance currently known to hold among natural election systems with a 
polynomial-time winner problem. In particular, fallback voting is fully resistant to constructive control and it is fully resistant 
to candidate control.

As the two control types fallback voting is vulnerable to are destructive types and as destructive control intuitively can 
be seen as less important than constructive control, one may now view the original line of research that was started by 
Bartholdi et al. [5] two decades ago as “satisfyingly answered,” and this is one of the main contributions of this paper. That 
is not to say that, among natural voting systems with polynomial-time winner determination, fallback voting were the one 
and only system with the strongest or broadest control resistance. Indeed, shortly after our results on fallback voting were 
made public in a technical report [27] dated March 11, 2011, Menton [55] reported analogous results for normalized range 
voting.1 It is very well possible that also other voting systems have the same resistances and vulnerabilities as fallback 
voting, and there might even be such a system that in addition is resistant to the two types of destructive control where 
fallback voting lacks resistance. We merely mean that fallback voting is the first natural voting system with polynomial-time 
winner determination shown to display such an almost complete control resistance.

Fallback voting is a hybrid system combining approval and Bucklin voting, and it is clear that each of these two con-
stituent “pure” systems are certainly more natural than their hybrid. Therefore, we also study the control complexity of 
Bucklin voting itself. While many important voting systems—including plurality, Condorcet, Copeland, maximin, and ap-
proval voting—have already been investigated with respect to electoral control (see the references in “Related Work” below), 
Bucklin voting is one of the few central voting systems for which a thorough study of the control complexity has been 
missing to date. We show that Bucklin voting has no more than one control resistance fewer than fallback voting (namely, 
possibly, regarding destructive control to partition of voters in the tie-handling model TP, see Section 2.2 for the defini-
tion). In particular, Bucklin voting is also fully resistant to constructive control and fully resistant to candidate control. Since 
Bucklin voting is a special case of fallback voting, each resistance result for Bucklin voting strengthens the corresponding 
resistance result for fallback voting.

Now that the line of research investigating electoral control resistance issues in terms of NP-hardness is “satisfyingly 
answered” with the results in this paper, it is appropriate to revisit the roots of this research line. In particular, what 
do resistance results based on NP-hardness results actually mean in practice, that is, for “typical” elections? We explore 
this question in two ways, one theoretical and one experimental—both meriting further investigation in understanding the 
robustness and resistance of various voting systems to malicious meddling. Our experimental analysis can be found in the 
companion paper [28] that is based on [62].

On the theory side, we study the parameterized complexity of some of the key control problems in natural param-
eterizations. Parameterized complexity allows a more fine-grained deployment of computational complexity, having the 
ability to model more closely “typical input structure.”2 In particular, we obtain W[2]-hardness results for problems re-
lated to adding/deleting either candidates or voters, parameterized by the number of candidates/voters that have been 
added/deleted.

Related work The study of electoral control was initiated by Bartholdi et al. [5], who introduced a number of construc-
tive control types and investigated plurality and Condorcet voting in this regard. The common types of destructive control 

1 Historical aside: The version of his technical report [54] that establishes a matching number of resistances is dated April 25, 2011.
2 We stress that “typical input structure” is different from (and should not be confused with) the “typical elections” used in our experimental results [28,

62]. While the former refers to typical parameters in the parameterized control problems we study, the latter refers to generating typical elections according 
to some distribution model.
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were proposed by Hemaspaandra et al. [43], who studied destructive control for plurality and Condorcet voting and con-
structive and destructive control for approval voting. Plurality voting was the first natural system (among those having a 
polynomial-time winner problem) found to be fully resistant to candidate control. Faliszewski et al. [34] studied the control 
complexity of the whole family of Llull/Copeland voting systems and were the first to find a natural voting system that 
is resistant to all common types of constructive control.3 Another such voting system with full resistance to constructive 
control, and also to candidate control, is sincere-strategy preference-based approval voting (SP-AV), as shown by Erdélyi et 
al. [25]. Prior to this paper, SP-AV was the voting system displaying the broadest control resistance among natural systems 
with a polynomial-time winner problem. However, SP-AV (as modified by Erdélyi et al. [25]) is arguably less natural a 
system than fallback voting.4 Note also that plurality has fewer resistances to voter control and Copeland voting has fewer 
resistances to destructive control than either of Bucklin and fallback voting. If we disregard SP-AV for the reasons mentioned 
in Footnote 4, all “natural” systems with polynomial-time winner determination (whose control behavior has been studied 
previously) are vulnerable to considerably more control types than Bucklin or fallback voting: plurality to six types, both 
Copeland and Condorcet to seven types, Llull to eight types, and approval voting to nine types. As mentioned above, shortly 
after our results were made public, Menton [55] showed that normalized range voting has the same number of resistances 
as fallback voting. See also the bookchapter of Faliszewski and Rothe [30] for a survey on these results.

The parameterized complexity of electoral control has been studied by Betzler and Uhlmann [8] and Faliszewski et 
al. [34] for Llull/Copeland voting, by Liu et al. [52] for plurality, Condorcet, and approval voting, and by Liu and Zhu [51] for 
maximin voting.

Faliszewski et al. [37] study control for a more flexible type of attack (so-called “multimode control”) and focus more on 
“combined” vulnerability than resistance. Meir et al. [53] consider a different type of control scenario as well, using utility 
functions rather than constructive/destructive control, and they restrict their attention to adding/deleting candidates/voters. 
Both papers just mentioned study different voting systems. Recently, Hemaspaandra et al. [45,46] investigated online control 
in sequential elections, which is quite a different model than standard control in simultaneous elections studied here, see 
also their related work [48] on online manipulation in sequential elections.

As mentioned earlier, manipulation is related to, but different from control and has been studied even more extensively, 
in particular by Bartholdi et al. [4], Bartholdi and Orlin [3], Conitzer et al. [16], Conitzer and Sandholm [15], Elkind and 
Lipmaa [21], Bachrach et al. [1], Obraztsova et al. [58], Faliszewski et al. [36,31], Isaksson et al. [50], Mossel and Racz [56], 
Xia et al. [66], Xia and Conitzer [64,65], Faliszewski et al. [38], Brandt et al. [13], and Elkind and Erdélyi [20], who follow 
up the approach to consider voting rule uncertainty proposed by Baumeister et al. [7] for the more general possible winner 
problem. Much of this work has been surveyed by Faliszewski et al. [35,29], Conitzer [14], Baumeister et al. [6], and Fal-
iszewski et al. [33]. Among the recent highlights regarding manipulation are the papers by Betzler et al. [9] and Davies et 
al. [17], who built on earlier work by Xia et al. [67] to show that Borda voting is NP-hard to manipulate, even with only 
two manipulators and even in the unweighted case.

Note that all our NP-hardness results regard control problems with unweighted votes as well. It is worthwhile to explain 
the similarities and differences between manipulation and control at this example. Betzler et al. [9] describe the unweighted 
coalitional manipulation problem on p. 55 as follows: “Can one add a certain number of additional votes (called manipu-
lators) to an election such that a distinguished candidate becomes a winner?” This problem is somewhat reminiscent of 
constructive control by adding voters. However, while the manipulators are free to choose their votes at will, the chair 
exerting control is confined to a pool of given votes to choose from. Note also that for most voting systems the NP-hardness 
reductions for control by adding voters tend to be easier than those for control by partition of voters; look, e.g., at the 
proofs of Theorems 3.19, 3.21, and 3.25 (the latter two using Constructions A.1 and 3.23 and Lemmas A.2 and 3.24).

A different and very insightful direction is taken by Hemaspaandra et al. [47] who analyze whether the complexity of the 
decision problems modeling the above described attacks on elections is the same as the complexity for the corresponding 
search problems. In their analysis, they also observed that some pairs of distinctly defined control problems in fact collapse 
to just one type of control. When defining them formally in Section 2.2, we will mention which control types this comment 
refers to.

Organization This paper is organized as follows. In Section 2, we recall some notions from social choice theory, define the 
commonly studied types of control, and explain Bucklin voting and the fallback voting procedure of Brams and Sanver [12] in 
detail. Our results on the classical and parameterized control complexity of Bucklin voting and fallback voting are presented 
in Section 3. Finally, Section 4 provides some conclusions and open questions.

3 Hemaspaandra et al. [44] construct, via “hybridization,” a system with perfect control resistance. However, this system is artificial and shouldn’t be 
used in practice, and it was not designed for that purpose.

4 SP-AV is another hybrid system combining approval and preference-based voting; Brams and Sanver [11] proposed the original system and Erdélyi 
et al. [25] its modification SP-AV. The reason why we said SP-AV is less natural than fallback voting is that, to preserve the votes’ “admissibility” (as 
required by Brams and Sanver [11] to preclude trivial approval strategies), SP-AV employs an additional rule to (re-)coerce admissibility if in the course of a 
control action an originally admissible vote becomes inadmissible. As discussed in detail by Baumeister et al. [6], this rule, if applied, changes the approval 
strategies of the originally cast votes—a severe drawback. In contrast, here we study the original fallback voting system of Brams and Sanver [12] where votes, 
once cast, do not change.
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2. Preliminaries

2.1. Elections and voting systems

An election (C, V ) is given by a finite set C of candidates and a finite list V of votes over C . A voting system is a rule 
that specifies how to determine the winner(s) of any given election. The two voting systems considered in this paper are 
Bucklin voting and fallback voting. Bucklin voting is named after James W. Bucklin and was used from 1909 till 1922 in 
Grand Junction, Colorado [49]. Bucklin voting is therefore also referred to as Grand Junction voting. Between 1910 and 1917, 
it was also adopted in real elections in many other cities in the United States (see, e.g., http :/ /www.electology.org /bucklin); 
although named “Bucklin voting,” the system they used was actually what Brams and Sanver [12] introduced as fallback 
voting, a hybrid voting system that combines Bucklin with approval voting.

In Bucklin voting, votes are represented as (strict) linear orders over C , i.e., each voter ranks all candidates according to 
his or her preferences. For example, if C = {a, b, c, d} then a vote might look like c d a b, i.e., this voter (strictly) prefers 
c to d, d to a, and a to b. Given an election (C, V ) and a candidate c ∈ C , define the level i score of c in (C, V ) (denoted by 
scorei

(C,V )(c)) as the number of votes in V that rank c among their top i positions. Denoting the strict majority threshold for 
a list V of voters by maj(V ) = �‖V ‖/2� + 1, the Bucklin score of c in (C, V ) is the smallest i such that scorei

(C,V )(c) ≥ maj(V ). 
All candidates with the smallest Bucklin score, say k, and the largest level k score are the Bucklin winners (BV winners, for 
short) in (C, V ). If some candidate becomes a Bucklin winner on level k, we call him or her a level k BV winner in election 
(C, V ). Note that a level 1 BV winner must be unique, but there may be more level k BV winners than one for k > 1, i.e., 
an election may have more than one Bucklin winner in general.

In approval voting, votes are represented by approval vectors in {0, 1}‖C‖ (with respect to a fixed order of the candidates 
in C ), where 0 stands for disapproval and 1 stands for approval. Given an election (C, V ) and a candidate c ∈ C , define the 
approval score of c in (C, V ) (denoted by score(C,V )(c)) as the number of c’s approvals in (C, V ), and all candidates with the 
largest approval score are the approval winners in election (C, V ). Note that an election may have more than one approval 
winner.

Fallback voting combines Bucklin with approval voting as follows. Each voter provides both an approval vector and a 
linear ordering of all approved candidates. The subset of candidates approved by a voter is also called his or her approval 
strategy. For simplicity, we will omit the disapproved candidates in each vote.5 For example, if C = {a, b, c, d} and a voter 
approves of a, c, and d but disapproves of b, and prefers c to d and d to a, then this vote will be written as: c d a. We will 
always explicitly state the candidate set, so it will always be clear which candidates participate in an election and which 
of them are disapproved by which voter (namely those not occurring in his or her vote). Given an election (C, V ) and a 
candidate c ∈ C , the notions of level i score of c in (C, V ) and level k fallback voting winner (level k FV winner, for short) in election 
(C, V ) are defined analogously to the case of Bucklin voting, and if there exists a level k FV winner for some k ≤ ‖C‖, he 
or she is called a fallback winner (FV winner, for short) in (C, V ). However, unlike in Bucklin voting, in fallback voting it may 
happen that no candidate reaches a strict majority for any level, due to voters being allowed to disapprove of (any number 
of) candidates, so it may happen that for no k ≤ ‖C‖ a level k FV winner exists. In such a case, every candidate with the 
largest (approval) score is an FV winner in election (C, V ). Note that Bucklin voting is the special case of fallback voting where 
each voter approves of all candidates.

As a notation, when a vote contains a subset of the candidate set, such as c D a for a subset D ⊆ C , this is a shorthand 
for c d1 · · · d� a, where the elements of D = {d1, . . . , d�} are ranked with respect to some (tacitly assumed) fixed ordering 
of all candidates in C . For example, if C = {a, b, c, d} is assumed to be ordered lexicographically and D = {b, d} then “c D a” 
is a shorthand for the vote c b d a. If the candidate set is downsized in the process of a control action, the deleted 
candidates are removed in every vote, e.g., a vote a c b d over the candidate set C = {a, b, c, d} is altered to c d if the 
subset C ′ = {c, d} of candidates is considered.

2.2. Types of electoral control

We will now formally describe the different types of electoral control, where we will distinguish two variants: In con-
structive control [5], the chair tries to make his or her favorite candidate win; in destructive control [43], the chair tries to 
prevent a despised candidate’s victory. We refrain from giving a detailed discussion of natural, real-life scenarios for each 
of the standard control types that motivate them; these can be found in, e.g., [5,43,34,44,25]. However, we stress that every 
control type is motivated by an appropriate real-life scenario, and we will briefly point some of them out below.

When we now formally define our standard control types as decision problems, we assume that each election or sub-
election in these control problems will be conducted with the voting system at hand (i.e., either Bucklin or fallback voting) 
and that each vote will be represented as required by the corresponding voting system. We also assume that the chair 
has complete knowledge of the voters’ preferences and/or approval strategies. This assumption may be considered to be 
unrealistic in certain settings, but is reasonable and natural in certain others, including small-scale elections among humans 

5 Erdélyi and Rothe [24] use a slightly different notation by separating the approved candidates from the disapproved candidates by a line, where all 
candidates to the left of this line are ranked and those to its right are unranked.

http://www.electology.org/bucklin
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and even large-scale elections among software agents. More to the point, assuming the chair to have complete information 
makes sense for our results, as most of our results are NP-hardness lower bounds showing resistance of a voting system 
against specific control attempts and complexity lower bounds in the complete-information model are inherited by any 
natural partial-information model; see [43] for a more detailed discussion of this point.

We formally state our control problems in the common instance/question format. We start with the four problems 
modeling control by adding candidates. In these control scenarios, the chair seeks to make a given preferred candidate win 
(in the constructive cases) or prevent the victory of a given despised candidate (in the destructive cases) via introducing 
new candidates from a given pool of spoiler candidates into the election. Faliszewski et al. [34] formalize this problem as 
follows. (In the definitions of control problems below, whenever we have a proper candidate subset C ′ ⊂ C for an election 
(C, V ) then (C ′, V ) denotes the election where the votes in V are restricted to C ′ .)

Constructive Control by Adding a Limited Number of Candidates (CCAC)

Given: An election (C ∪ D, V ), C ∩ D = ∅, a distinguished candidate c ∈ C , and a nonnegative integer k. 
(C is the set of originally qualified candidates and D is the set of spoiler candidates that may be 
added.)

Question: Does there exist a subset D ′ ⊆ D such that ‖D ′‖ ≤ k and c is the unique winner (under the election 
system at hand) of election (C ∪ D ′, V )?

Constructive Control by Adding an Unlimited Number of Candidates, the problem variant originally proposed by 
Bartholdi et al. [5], is the same except there is no limit k on the number of spoiler candidates that may be added. We 
abbreviate this problem variant by CCAUC. Faliszewski et al. [34] discuss in detail the reasons of why it makes sense to also 
consider the unlimited version of the problem. Although the difference in the definitions may appear to be negligible, note 
that the complexity of these problems differs significantly in some cases, e.g., in Llull’s voting system [34]. The destructive 
variants of both problems defined above are obtained by asking whether c is not a unique winner of election (C ∪ D ′, V ). 
We use the shorthands DCAC and DCAUC.

Control by deleting candidates is defined analogously to control by adding a limited number of candidates, except that 
the chair now seeks to make a distinguished candidate c win by deleting up to k candidates from the given election.6 This 
control scenario models candidate suppression. For example, by deleting certain candidates other than c the chair may hope 
that their voters swing to now support c.

Constructive Control by Deleting Candidates (CCDC)

Given: An election (C, V ), a distinguished candidate c ∈ C , and a nonnegative integer k.

Question: Does there exist a subset C ′ ⊆ C such that ‖C ′‖ ≤ k and c is the unique winner (under the election 
system at hand) of election (C − C ′, V )?

The destructive version of this problem is the same except that the chair now wants to preclude c from being a unique 
winner (and, to prevent the problem from being trivial, simply deleting c is not allowed). We use the shorthand DCDC.

Both Constructive Control by Partition of Candidates and Constructive Control by Run-Off Partition of Candidates

take as input an election (C, V ) and a candidate c ∈ C and ask whether c can be made the unique winner in a certain two-
stage election consisting of one (in the partition case) or two (in the run-off partition case) first-round subelection(s) and 
a final round. In both variants, following Hemaspaandra et al. [43], we consider two tie-handling rules, TP (“ties promote”) 
and TE (“ties eliminate”), that enter into force when more candidates than one are tied for winner in any of the first-round 
subelections:

Constructive Control by Run-Off Partition of Candidates with TP Rule (CCRPC-TP)

Given: An election (C, V ) and a distinguished candidate c ∈ C .

Question: Is it possible to partition C into C1 and C2 such that c is the unique winner (under the election 
system at hand) of election (W1 ∪ W2, V ), where W i , i ∈ {1, 2}, is the set of winners of subelection 
(Ci, V )?

Constructive Control by Partition of Candidates with TP Rule (CCPC-TP)

Given: An election (C, V ) and a distinguished candidate c ∈ C .

Question: Is it possible to partition C into C1 and C2 such that c is the unique winner (under the election 
system at hand) of election (W1 ∪ C2, V ), where W1 is the set of winners of subelection (C1, V )?

6 No unlimited version has been considered previously for this control type or for the types of control by adding or deleting voters to be defined below.
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In both cases, when the TE rule is used, none of multiple, tied first-round subelection winners is promoted to the final 
round. For example, if we have a run-off and ‖W2‖ ≥ 2 then the final-round election collapses to (W1, V ); only a unique
first-round subelection winner is promoted to the final round in TE. We abbreviate these two problem variants by CCRPC-TE

and CCPC-TE. Note that the candidate set in the final round can be empty when the TE rule is used. In this case, the 
resulting two-stage election has no winner.

It is obvious how to obtain the destructive variants of these four problems formalizing control by candidate partition. 
We use the shorthands DCRPC-TP, DCPC-TP, DCRPC-TE, and DCPC-TE. Note that in the destructive TE case, a control action 
is also successful when the winner set is empty (i.e., when there are no participants in the final round of the election due 
to ties in the subelections).

We have defined all control problems so far in the so-called unique-winner model, which is the default in most previous 
papers on control. By changing the questions in these problems to whether the designated candidate can be made a winner 
of the resulting election (possibly among several winners) in the constructive cases, or can be prevented from being a
winner in the destructive cases, the so-called nonunique-winner (or co-winner) model is defined. All our results hold in both 
models; we will provide detailed proofs in the unique-winner model and (if needed) will explicitly state how to adapt them 
to also apply to the co-winner case.

These are the originally defined variants of the partition-of-candidates problems due to Hemaspaandra et al. [43]. As 
mentioned in the introduction, Hemaspaandra et al. [47] recently observed that some pairs of destructive partition-of-
candidates cases with the same tie-handling rule actually collapse, depending on the winner model used: DCRPC-TE =
DCPC-TE in the unique-winner model, and DCRPC-TP = DCPC-TP and DCRPC-TE = DCPC-TE in the co-winner model, for each 
election system.

The following example gives a real-life scenario of control by partition of candidates in both cases: with and without a 
runoff.

Example 2.1. The student representatives of the computer science department want to organize a movie night for the 
students of their departement and it has to be decided which movie to show. All students coming to movie night should 
have a say in what movie will be watched, so the student representatives organize an election the following way: First, they 
group the different movies according to categories like “action,” “comedy,” “romance,” “thriller,” and so on, and the students 
determine the best movies in each category according to their tastes. Then, when the winners in the different categories are 
known, the students can decide what kind of movie they want to see, so in the final election, they vote over the winning 
movies from the categories. By limiting the number of categories to two, this situation can be modeled by partition of 
candidates with runoff.

Another way of organizing this election is the following: To do justice to classic movies that always deserve to be shown, 
the student’s representatives first choose some classic movies, and then they let the students elect their favorite one among 
a number of recently released movies. In the final election, the students vote over all the classic movies and the subelection 
winners among the recent released movies. This models partition of candidates without a runoff.

Other real-life examples include sports tournaments in which certain teams (such as last year’s champion and the team 
hosting this year’s championship) are given an exemption from qualification.

Turning now to the voter control problems, we start with control by adding voters. This control scenario models attempts 
by the chair to influence the outcome of elections via introducing new voters. There are many ways of introducing new 
voters into an election—think, for example, of “get-out-the-vote” drives, or of lowering the age-limit for the right to vote, or 
of attracting new voters with certain promises or even small gifts.

Constructive Control by Adding Voters (CCAV)

Given: An election (C, V ∪ V ′), V ∩ V ′ = ∅, where V is a list of registered voters and V ′ a pool of as yet 
unregistered voters that can be added, a distinguished candidate c ∈ C , and a nonnegative integer k.

Question: Does there exist a sublist V ′′ ⊆ V ′ of size at most k such that c is the unique winner (under the 
election system at hand) of election (C, V ∪ V ′′)?

The destructive variant of this problem is the same except that the chair now wants to preclude c from being a unique 
winner. We use the shorthand DCAV.

Disenfranchisement and other means of voter suppression is modeled as control by deleting voters.

Constructive Control by Deleting Voters (CCDV)

Given: An election (C, V ), a distinguished candidate c ∈ C , and a nonnegative integer k.

Question: Does there exist a sublist V ′ ⊆ V such that ‖V ′‖ ≤ k and c is the unique winner (under the election 
system at hand) of election (C, V − V ′)?
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Again, the destructive variant of this problem is the same except that the chair now wants to preclude c from being a 
unique winner. We use the shorthand DCDV.

Also the voter set can be partitioned when controlling an election and we define the corresponding problem using the 
tie-handling model TP as follows.

Constructive Control by Partition of Voters (CCPV-TP)

Given: An election (C, V ) and a distinguished candidate c ∈ C .

Question: Is it possible to partition V into V 1 and V 2 such that c is the unique winner (under the election 
system at hand) of election (W1 ∪ W2, V ), where W i , i ∈ {1, 2}, is the set of winners of subelection 
(C, V i)?

The destructive variant of this problem, denoted by DCPV-TP, is defined analogously, except it asks whether c is not a 
unique winner of this two-stage election. In both variants, if one uses the tie-handling model TE instead of TP in the two 
first-stage subelections, a winner w of subelection (C, V 1) or (C, V 2) proceeds to the final stage if and only if w is the 
only winner of his or her subelection. We use the shorthands CCPV-TE and DCPV-TE. Each of the four problems just defined 
models “two-district gerrymandering” (see e.g. [2] for further information on district-gerrymandering in general).

2.3. Classical and parameterized complexity

We assume the reader is familiar with the basic complexity classes such as P and NP. In classical complexity theory, a 
decision problem A (polynomial-time many-one) reduces to a decision problem B if there is a polynomial-time computable 
function f such that for all inputs x, x is a yes-instance for problem A if and only if f (x) is a yes-instance for problem B . 
A problem B is NP-hard if every NP problem A reduces to B , and B is NP-complete if it is NP-hard and in NP. A problem 
B is shown to be NP-hard by exhibiting a reduction to B from a problem A that is already known to be NP-hard. More 
background on (classical) complexity theory can be found, e.g., in the textbooks by Papadimitriou [59] and Rothe [61].

The theory of parameterized complexity was introduced by Downey and Fellows [18] based on a series of papers in the 
early 1990s and has developed into a vigorous branch of contemporary computer science, having strong applications in such 
areas as artificial intelligence and computational biology. The main idea is that for most NP-hard problems, typical inputs 
have secondary structure beyond the instance size measure n that may significantly affect problem complexity in real-world 
computing contexts.

As a simple concrete illustration of the issue, the problem ML Type Checking, concerned with checking the consistency 
of type declarations in the ML programming language, was noted to be easy to solve in practice, despite being NP-hard. 
The explanation is that the relevant algorithm runs in time O (2kn), where n is the instance size (here, the length of the ML 
program), and k is the secondary measurement: the maximum nesting depth of the type declarations. For real-world ML 
programs, usually k ≤ 3 and the algorithm easily solves the problem for typical instances.

This concrete example leads to the general setup of parameterized complexity theory. A parameterized decision problem
is a decision problem in the classical sense, together with a specification of the secondary measurement (the parameter) 
of interest. The parameter may be an aggregate of several secondary measurements. The central notion is fixed-parameter 
tractability (FPT), meaning solvability in time f (k)nc , where f is an arbitrary function, and c is a fixed constant. One can 
see that this generalizes polynomial time to this explicitly multivariate (two-dimensional) setting of parameterized decision 
problems.

There are some parameterized decision problems that seem not to admit fixed-parameter tractable algorithms. The well 
known graph problem Vertex Cover, parameterized by the size of a solution set of vertices, is fixed-parameter tractable, 
with an algorithm having the same running time as in the above ML Type Checking example: O (2kn), where here n is 
the number of vertices in the instance graph, and k is the solution size. In contrast, the graph problem Dominating Set, 
parameterized by the size of a solution set of vertices, seems to admit no algorithm significantly better than O (nk), based 
on brute force examination of all up-to-k-subsets of the vertices.

Classical complexity is built from essentially four main ingredients: (1) The central (desirable) notion of polynomial-
time complexity. (2) The notion of polynomial-time many-one reducibility that “transmits” the issue of polynomial-time 
solvability downward in the sense that if a decision problem A reduces to a decision problem B , and if B is polynomial-
time solvable, then A is as well. (3) There is a hierarchy of classes of problems that are considered unlikely all to admit 
polynomial-time algorithms, e.g., NP and beyond; see, e.g., the textbook by Rothe [61] for various hierarchies built upon NP. 
(4) This consideration is supported by a highly plausible conjecture (namely, that P differs from NP) concerning the difficulty 
of analyzing the behavior of nondeterministic Turing machines.

Parameterized complexity is similarly structured: (1) The central (desirable) outcome in the two-dimensional setting is 
fixed-parameter tractability. (2) There is a corresponding notion of reduction between parameterized problems that trans-
mits the issue of FPT solvability downward (see below for the definition). (3) There is a hierarchy of presumably intractable 
parameterized problem classes; see below and, e.g., the monograph by Downey and Fellows [18]. (4) The presumption is 
underwritten by a highly plausible conjecture concerning the difficulty of analyzing the behavior of nondeterministic Turing 
machines, that is a natural (parameterized) variation on the central classical complexity conjecture.
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Definition 2.2 (Downey and Fellows [18]). A parameterized decision problem is a language L ⊆ Σ∗×N. L is fixed-parameter 
tractable if there exists some computable function f such that for each input (x, k) of size n = |(x, k)|, it can be determined 
in time O( f (k) · nc) whether or not (x, k) is in L, where c is a constant.

Given two parameterized problems L and L′ (both encoded over Σ∗×N), we say L parameterizedly reduces to L′ if there 
is a function f : Σ∗×N → Σ∗×N such that for each (x, k), (1) f (x, k) = (x′, k′) can be computed in time O(g(k) · p(|x|)) for 
some function g and some polynomial p, and (2) (x, k) ∈ L if and only if (x′, k′) ∈ L′ , where k′ ≤ g(k) (that is, k′ depends 
only on k).

A parameterized problem L is hard for a parameterized complexity class C if every problem in C parameterizedly reduces 
to L, and L is complete for C if it both belongs to C and is hard for C .

The main hierarchy of parameterized complexity classes is: FPT = W[0] ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[t] ⊆ · · · ⊆ XP. FPT
is the class of fixed-parameter tractable problems. W[1] is a strong parameterized analogue of NP, as the parameterized
k-Step Halting Problem for Nondeterministic Turing Machines is complete for W[1] under the above notion of parame-
terized reducibility [18]. If one can parameterizedly reduce from this problem to some other problem, this other problem is 
W[1]-hard.

Many classical decision problems have an obvious parameterized variant for a natural parameter. For example, the Clique

problem asks, given a graph G and a positive integer k, whether G has a clique (i.e., a subset of G ’s vertices that are pair-
wise adjacent) of size at least k. In such cases, we let k-Π denote this obvious parameterized variant of the classical 
decision problem Π . The parameterized k-Clique problem is another problem complete for W[1], and the parameterized
k-Dominating Set problem (which will be defined in Section 2.3) is complete for W[2]. The latter two parameterized prob-
lems (with parameter k, where k is the solution size) are frequent sources of reductions that show likely parameterized 
intractability. XP is the class of parameterized decision problems solvable in time O (ng(k)) for some function g . For further 
background on parameterized complexity theory, see the monographs by Downey and Fellows [18], Niedermeier [57], and 
Flum and Grohe [39]. Betzler et al. [10] survey a number of FPT and parameterized complexity results in computational 
social choice, see also the wiki of the parameterized complexity community (fpt.wikidot.com).

We will now introduce the decision problems that will be used for hardness proofs throughout this paper and we 
begin with the NP-complete problem Exact Cover by Three-Sets, which will be used in Section 3.4 (see, e.g., Garey and 
Johnson [41]):

Exact Cover by Three-Sets (X3C)

Given: A set B = {b1, b2, . . . , b3m}, m > 1, and a collection S = {S1, S2, . . . , Sn} of subsets Si ⊆ B with 
‖Si‖ = 3 for each i, 1 ≤ i ≤ n.

Question: Is there a subcollection S ′ ⊆ S such that each element of B occurs in exactly one set in S ′?

Note that X3C is trivial to solve for m = 1. For the hardness proofs for several candidate control cases in Section 3.3 and 
one case of voter control in Section 3.4, we will use a restricted version of the NP-complete problem Hitting Set (see, e.g., 
Garey and Johnson [41]), which is defined as follows:

Restricted Hitting Set (RHS)

Given: A set B = {b1, b2, . . . , bm}, a collection S = {S1, S2, . . . , Sn} of nonempty subsets Si ⊆ B such that 
n > m, and a positive integer k with 1 < k < m.

Question: Does S have a hitting set of size at most k, i.e., is there a set B ′ ⊆ B with ‖B ′‖ ≤ k such that for 
each i, Si ∩ B ′ �= ∅?

This restriction is needed to ensure that in the election constructed from an RHS instance in Construction A.1 (see 
p. 657), the scores of certain candidates are bounded. Construction A.1 is an adaptation to Bucklin voting of a construction 
due to Hemaspaandra et al. [43], namely Construction 4.28 in their paper, which they used to handle several candidate 
control cases for plurality voting. The election constructed there starts from a differently defined problem that is also 
called “Restricted Hitting Set” but that is restrictive in another sense by requiring n(k + 1) ≤ m − k. In both constructions, 
the restriction serves the same purpose: bounding the scores of certain candidates so as to make the construction work. 
Observe that our RHS problem is NP-complete as well, i.e., our restriction does not make the problem too easy. For the 
(straightforward) proof, see the technical report [27].

Regarding parameterized complexity, many W[2]-hardness results are proven via parameterized reductions from pa-
rameterized graph problems. We will prove W[2]-hardness of certain parameterized control problems via a parameterized 
reduction from the k-Dominating Set problem, which was shown to be W[2]-complete by Downey and Fellows [18]. Before 
we introduce this problem, we need some basic graph-theoretic notions.

http://fpt.wikidot.com
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Definition 2.3. Let G = (B, A) be an undirected graph without loops or multiple edges.7 We say that two distinct vertices 
bi and b j are adjacent in G if and only if there is an edge {bi, b j} ∈ A. Adjacent vertices are called neighbors in G . The 
neighborhood of a vertex bi ∈ B is defined by N(bi) = {b j ∈ B | {bi, b j} ∈ A}. The closed neighborhood of bi ∈ B is defined by 
N[bi] = N(bi) ∪ {bi}. For a subset S ⊆ B , the neighborhood of S is defined as N(S) = ⋃

bi∈S N(bi) and the closed neighborhood 
of S is defined as N[S] = ⋃

bi∈S N[bi].
A subset B ′ ⊆ B is said to be a dominating set in G if for each bi ∈ B − B ′ there is a b j ∈ B ′ such that {bi, b j} ∈ A. The size 

of a dominating set is the number of its vertices.

Now we can define the W[2]-complete problem k-Dominating Set:

k-Dominating Set (k-DS)

Given: A graph G = (B, A) and a positive integer k ≤ ‖B‖.

Parameter: k.
Question: Is there a dominating set of size at most k in G?

In other words, the (parameterized) dominating set problem tests, given a graph G = (B, A) and an integer k as the 
parameter, whether there is a subset B ′ ⊆ B of size at most k such that B = N[B ′]. To distinguish the classical variant of this 
problem from its parameterized version just defined above, we drop the parameter in the problem name of the latter and 
simply write Dominating Set (DS), one of the standard NP-complete problems (see, e.g., Garey and Johnson [41]). Note that, 
without loss of generality, we can assume that n > 2 holds in any given DS and k-DS instance, respectively, since the thus 
restricted problem remains NP-complete and W[2]-complete, respectively. The parameterized version k-RHS of RHS can be 
defined analogously.

Remark 2.4. If Π is a (classical) decision problem in P, then k-Π is in FPT for each parameter k. This gives a useful 
link between the two easiness notions in classical and parameterized complexity theory. In particular, FPT membership 
of a parameterized control problem (with respect to any parameter) follows from the voting system’s vulnerability to the 
corresponding control type.

It may be tempting to assume there would be a similarly direct link between the hardness notions in classical and 
parameterized complexity theory, such as “W[2]-hardness of k-Π immediately implies NP-hardness for Π .” However, this state-
ment is false, in general. The classical framework, which is built around P and reductions, and the parameterized framework, 
which is built around FPT and parameterized reductions, are essentially orthogonal. For concrete examples, with respect to 
suitable parameters, VC-Dimension (VCD) is unlikely to be NP-hard but k-VCD is complete for W[1], and Tournament Dom-

inating Set (TDS) is unlikely to be NP-hard but k-TDS is W[2]-complete,8 see [18] for more details. That being said, if one 
has a proof of, say, W[2]-hardness by a reduction simultaneously mapping from the NP- and W[2]-complete problems DS

and k-DS, respectively, and the transformation is polynomial-time, then of course, the transformation shows both NP- and 
W[2]-hardness at the same time, and we will use this fact in some of our proofs.

In the reductions presented in Sections 3.3 and 3.4, we will always start from a given instance of an NP-complete and/or 
W[2]-complete decision problem suitable for the control problem at hand, that is, we will always start from a given X3C,
RHS, DS, or k-DS instance. In the upcoming constructions, the set of candidates in the elections to be defined will always 
contain the set B from these instances. That is, for each element (or vertex) bi ∈ B there is a candidate bi in the election 
constructed, and it will always be clear from the context whether we mean an element (or a vertex) or a candidate when 
writing bi . We will also refer to Si (or N[bi]) as a “subset of the candidates,” namely, the set of candidates corresponding 
to the elements (or vertices) in B that are in Si (or in vertex bi ’s closed neighborhood, N[bi], 1 ≤ i ≤ n). (Recall the sets Si
from the definition of X3C and RHS and the notion of N[bi] from Definition 2.3.)

2.4. Immunity, susceptibility, resistance, and vulnerability

Let CT be a control type (e.g., CT might stand for “constructive control by partition of voters in model TP” or any of the 
other types of control defined in Section 2.2).

Definition 2.5. We say a voting system is immune to CT if it is impossible for the chair to make the given candidate a 
unique winner in the constructive case (not a unique winner in the destructive case) via exerting control of type CT, i.e., for 

7 We denote the vertex set of a graph not by V , as would be common, but rather by B , in order to avoid confusion with voter lists (for which “V ” is 
reserved in this paper) and also in accordance with B being the base set in the instances of the problems X3C and RHS.

8
TDS is the problem of deciding whether a given tournament has a dominating set of size at most k (the parameter in k-TDS). VCD is related to the 

so-called “Vapnik–Chervonenkis dimension” (which is the parameter in k-VCD), a problem quite central in learning theory; see [18] for the definition and 
more details.
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Table 1
Overview of classical and parameterized complexity results for control in Bucklin and fallback voting. All results hold in both the co-winner and the unique-
winner model. Key: I = immune, S = susceptible, R = resistant, R∗ = parameterizedly resistant, V = vulnerable, TE = ties eliminate, and TP = ties promote. 
Results new to this paper are in boldface. Results for approval voting are due to Hemaspaandra et al. [43]. Results for SP-AV are due to Erdélyi et al. [25].

Fallback Voting Bucklin Voting SP-AV Approval Voting

Control by Const. Dest. Const. Dest. Const. Dest. Const. Dest.

Adding Candidates R∗ R∗ R∗ R∗ R R I V
Adding Candidates unlimited R R R R R R I V
Deleting Candidates R∗ R∗ R∗ R∗ R R V I
Partition of Candidates – TE R R R V
Run-off Partition of Candidates – TE R

R
R

R
R

R
V

I

Partition of Candidates – TP R R R I
Run-off Partition of Candidates – TP R

R
R

R
R

R
I

I

Adding Voters R∗ V R∗ V R V R V
Deleting Voters R∗ V R∗ V R V R V
Partition of Voters – TE R R R R R V R V
Partition of Voters – TP R R R S R R R V

any given election and any given distinguished candidate, there is no successful control action of type CT. We say a voting 
system is susceptible to CT if it is not immune to CT. A voting system that is susceptible to CT is said to be vulnerable to CT

if the control problem corresponding to CT can be solved in polynomial time, and resistant to CT if the control problem 
corresponding to CT is NP-hard.

These notions are due to Bartholdi et al. [5] (except that we follow the now more common approach of Hemaspaandra 
et al. [44] who define resistant to mean “susceptible and NP-hard” rather than “susceptible and NP-complete”). In analogy 
to the classical complexity notion, we say that a voting system is parameterizedly resistant to CT (with respect to a specified 
parameter) if it is susceptible to CT and the parameterized decision problem corresponding to CT and this parameter is 
W[1]-hard. For example, a natural parameter to look at for control by deleting candidates is the number of candidates 
deleted. Note that W[t]-hardness for t > 1 implies W[1]-hardness, so this definition captures hardness for the W-hierarchy.

3. Control complexity in Bucklin and fallback voting

3.1. Overview

Table 1 shows in boldface our results on the control complexity of Bucklin voting and fallback voting for all standard 
control types. Recall from Remark 2.4 that for every R∗ entry in the table (i.e., for every parameterized resistance w.r.t. 
the parameters stated later in our theorems and corollaries), we will show a corresponding resistance (i.e., NP-hardness) 
result by essentially the same reduction. Since fallback voting combines Bucklin and approval voting, the table also shows 
the results for approval voting due to Hemaspaandra et al. [43],9 for comparison. The other voting system displayed in 
the table, SP-AV, is yet another hybrid voting system combining approval with preference-based voting, which has been 
introduced by Brams and Sanver [11] and modified and studied by Erdélyi et al. [25]. Prior to the present work, SP-AV has 
been the system with the most known resistances to electoral control among natural voting systems with polynomial-time 
winner determination. As argued in the introduction, both fallback voting and Bucklin voting are much more natural voting 
systems than SP-AV as modified by Erdélyi et al. [25].

Table 2 gives an overview of the reductions used to prove the new (i.e., boldfaced) resistance and parameterized resis-
tance results in Table 1. The first column states the problem from which we reduce, and the second column the control 
problem shown to be (parameterizedly) resistant. The problem name has the prefix “BV” if this control problem refers to 
Bucklin voting (which immediately implies hardness also for fallback voting). The only problem name with the prefix “FV” 
for fallback voting, FV-DCPV-TP in the last row, refers to the case where the complexity is open for Bucklin voting. The 
third column of Table 2 points at the corresponding theorem or construction and the fourth column states whether it is a 
parameterized reduction or not.

3.2. Susceptibility

To show that a voting system is susceptible to a certain type of control, it is enough to construct a suitable example of 
an election where control of this type is possible. For all types of control considered here, such an example can easily be 
found for Bucklin elections (see [27]).

Lemma 3.1. Bucklin voting is susceptible to each control type defined in Section 2.2, in both winner models.

9 Note that the results for control by adding a limited number of candidates in approval voting, though not explicitly considered by Hemaspaandra et 
al. [43], can be obtained straightforwardly from their proofs for the corresponding “unlimited” adding-candidates case.
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Table 2
Overview of the reductions used to prove the new results in Table 1.

Reduction from to Reference parameterized?

k-DS

BV-CCDC Theorem 3.3

yes
BV-DCDC Theorem 3.4
BV-CCAV Theorem 3.11
BV-CCDV Theorem 3.15

BV-DCPV-TE Construction A.1 and Theorem 3.21 no

RHS

BV-CCAC

Construction 3.6 and Theorem 3.8
yes

BV-DCAC

BV-CCAUC

no

BV-DCAUC

BV-CCPC-TE

Construction 3.6 and Theorem 3.9

BV-CCPC-TP

BV-DCPC-TE

BV-DCPC-TP

BV-CCRPC-TE

BV-CCRPC-TP

FV-DCPV-TP Construction 3.23 and Theorem 3.25

X3C
BV-CCPV-TE

Theorem 3.19
BV-CCPV-TP

Fig. 1. Susceptibility links in various control scenarios due to Hemaspaandra et al. [43].

Since Bucklin voting is a special case of fallback voting, fallback voting is also susceptible to all common types of control.

Corollary 3.2. Fallback voting is susceptible to each control type defined in Section 2.2, in both winner models.

Our proofs which can be found in detail in the technical report of Erdélyi et al. [27] do not provide one example for each 
type of control but make use of the results of Hemaspaandra et al. [43] that provide general proofs of and links between 
certain susceptibility cases. For the sake of self-containment, Fig. 1, which is taken from [63, p. 199], gives an overview of 
the susceptibility links in various control scenarios from Hemaspaandra et al. [43]. An arrow between two control types in 
this figure, say CT1 → CT2, means that susceptibility to CT1 implies susceptibility to CT2; and the arrows between control 
types and the two properties in dashed boxes mean that (1) susceptibility to destructive control by deleting candidates 
implies that Unique-WARP is violated,10 and (2) every voiced11 election system is susceptible to destructive control by 
adding candidates.

3.3. Candidate control

In this section, we show the (parameterized) resistance results for candidate control in Bucklin and fallback voting. 
Recall from Section 2.4 that “parameterized resistance” (indicated by the R∗ entries in Table 1) refers to W[2]-hardness of 
the corresponding control problem with respect to a specified parameter, and “resistance” (indicated by the R entries in 
Table 1) refers to NP-hardness of the corresponding control problem. Also, recall from Section 2.3 that in the reductions to 
be presented in this section, the elections constructed will always contain a subset B of candidates, where each candidate 

10 The unique variant of the “weak axiom of revealed preferences” (WARP) is violated if there is a unique winner of an election who is not the unique 
winner of some subelection containing him or her.
11 An election system is said to be voiced if the single candidate in any one-candidate election always wins.
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Table 3
Level i scores in (C, V ) for i ∈ {k + 1, k + 2, n + k, n + k + 1} and the candidates in C − (X ∪ Y ).

bi ∈ B w d j ∈ D

scorek+1 ≤ n 0 n − k
scorek+2 ≤ n 1 ≤ n − 1
scoren+k ≤ n 1 n
scoren+k+1 ≤ n n + 1 n + 1

bi corresponds to the element bi from the set B given in the (parameterized) decision problem the reduction starts from. It 
will always be clear from the context whether a candidate or an element is meant by bi .

Theorem 3.3. Bucklin voting is resistant to constructive control by deleting candidates, and is parameterizedly resistant when this 
control problem is parameterized by the number of candidates deleted. Each result holds in both winner models.

Proof. In light of Remark 2.4 it is enough to give just one reduction to prove both claims at the same time. Let (G, k) with 
G = (B, E) be a given instance of k-Dominating Set as described in Section 2.3. Without loss of generality, we may assume 
that k < n = ‖B‖, since the set B of all vertices is a trivial dominating set in G . We start with the unique-winner model.

Define the election (C, V ), where C = B ∪ D ∪{w} ∪ X ∪ Y is the set of candidates, w is the distinguished candidate, D is 
a set of “co-winners” (see below), and X and Y are sets of padding candidates.12

Co-winners in D: D is a set of k + 1 candidates that tie with w . These candidates prevent that deleting up to k co-winners 
of election (C, V ) makes w the unique winner.

Padding candidates in X : X is a set of n(n + k) − ∑n
i=1 ‖N[bi]‖ candidates such that for each i, 1 ≤ i ≤ n, we can find a 

subset Xi ⊆ X with n + k − ‖N[bi]‖ elements such that Xr ∩ Xs = ∅ for all r, s ∈ {1, . . . , n} with r �= s. These subsets 
ensure that w is always placed at the (n + k + 1)st position in the first voter group of V below.

Padding candidates in Y : Y is a set of n(k + 1) candidates such that for each j, 1 ≤ j ≤ k + 1, we can find a subset Y j ⊆ Y
with n elements such that Yr ∩ Ys = ∅ for all r, s ∈ {1, . . . , k + 1} with r �= s. These subsets ensure that each d j ∈ D is 
always placed at the (n + k + 1)st position in the second voter group of V below.

V is the following collection of 2n + 1 voters, so that we have a strict majority with n + 1 votes:

# For each . . . number of votes ranking of candidates

1 i ∈ {1, . . . ,n} 1 N[bi ] Xi w ((B − N[bi ]) ∪ (X − Xi) ∪ Y ) D
2 j ∈ {1, . . . ,k + 1} 1 Y j (D − {d j}) d j (B ∪ X ∪ (Y − Y j) ∪ {w})
3 n − k − 1 D (X ∪ Y ) w B
4 1 D w (X ∪ Y ) B

Note that when up to k candidates are deleted (no matter which ones), the candidates from D can never be among the 
top n + k candidates in the votes of the first voter group. Table 3 shows the scores on the relevant levels of the relevant 
candidates in election (C, V ).

Note that the candidates in D and candidate w are the only level n + k + 1 Bucklin winners of election (C, V ), since 
there is no other candidate reaching a strict majority of n + 1 votes or more on any level up to n + k + 1.

We claim that G has a dominating set of size k if and only if w can be made the unique Bucklin winner by deleting at 
most k candidates.

From left to right: Suppose G has a dominating set B ′ ⊆ B of size k. Delete the corresponding candidates from C . Since 
B ′ is a dominating set in G (i.e., B = N[B ′]), every bi ∈ B has a neighbor in B ′ or is itself in B ′ , which means that in election 
(C − B ′, V ) candidate w gets pushed at least one position to the left in each of the n votes in the first voter group. So w
reaches a strict majority already on level n + k with a score of n + 1. Since no other candidate does so (in particular, no 
candidate in D), it follows that w is the unique level n + k Bucklin winner of election (C − B ′, V ).

From right to left: Suppose w can be made the unique Bucklin winner of the election by deleting at most k candidates. 
Since there are k + 1 candidates other than w (namely, those in D) having a strict majority on level n + k + 1 in election 
(C, V ), deleting k candidates from D is not sufficient for making w the unique Bucklin winner of the resulting election. So 
by deleting at most k candidates, w must become the unique Bucklin winner on a level lower than or equal to n + k. This 
is possible only if w is pushed at least one position to the left in all votes from the first voter group. This, however, implies 
that the k′ ≤ k deleted candidates either are all contained in B and correspond to a dominating set of size k′ for G , or are 
in B ∪ X . Note that not all deleted candidates can be contained in X , since k < n and the sets Xi , 1 ≤ i ≤ n, are pairwise 

12 Note that in this construction as well as in later constructions, the subsets of padding candidates are always constructed so as to ensure that, at least 
up to a certain level, no padding candidate scores enough points to be relevant for the outcome of the election. So in the following argument the padding 
candidates are mainly ignored and their scores are not listed in the overview tables.
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disjoint. If some of the k′ deleted candidates are in X , say � < k′ of them, let B ′ be the set containing the k′ − � other 
candidates that have been deleted. For each i, 1 ≤ i ≤ n, if in the ith voter of the first group no candidate from N[bi] was 
deleted but a candidate x j from Xi , add an arbitrary candidate from N[bi] to B ′ instead of x j . This yields again a dominating 
set of size k′ for G . In both cases, if k′ < k then by adding k − k′ further candidates from B (which is possible due to k < n) 
we obtain a dominating set of size k for G .

Note that this polynomial-time reduction is parameterized, as the given parameter k of k-Dominating Set is the same 
parameter k that bounds the number of candidates allowed to be deleted in the control problem.

For showing resistance in the co-winner model, the definition of the padding candidates in X has to be changed such 
that in each voter of the first group one more padding candidate is ranked ahead of w . This ensures that w is not a 
winner in the election (C, V ) and, furthermore, reaches a strict majority one level later than the candidates in D . Thus, the 
remaining argumentation can be adapted straightforwardly. �

The proof of the following theorem is similar to that of Theorem 3.3 and is deferred to Appendix A.

Theorem 3.4. Bucklin voting is resistant to destructive control by deleting candidates, and is parameterizedly resistant when this 
control problem is parameterized by the number of candidates deleted. Each result holds in both winner models.

Corollary 3.5. Fallback voting is resistant to constructive and destructive control by deleting candidates, and is parameterizedly re-
sistant when these two control problems are parameterized by the number of candidates deleted. Each result holds in both winner 
models.

Construction 3.6 will be applied to prove the remaining ten cases of candidate control, establishing resistance in each 
case. For some of the results, parameterized resistance can be established, as well. This construction adapts Construction 4.28 
of Hemaspaandra et al. [43], which they used to handle certain candidate control cases for plurality voting.13 Note that they 
start from a Hitting Set instance, while we reduce from the restricted version RHS of this problem defined in Section 2.3, 
and in our construction there is one additional candidate, d, and there are two more voter groups than in their construction. 
These modifications are needed because Bucklin voting is based on a more involved procedure than plurality voting.

Construction 3.6. Let (B, S, k) be an instance of RHS, with B = {b1, b2, . . . , bm} a set, S = {S1, S2, . . . , Sn} a collection of nonempty 
subsets Si ⊆ B such that n > m, and k < m a positive integer. (Thus, n > m > k > 1.)

Define the election (C, V ), where C = B ∪{c, d, w} is the candidate set and where V consists of the following 6n(k + 1) + 4m + 11
voters:

# For each . . . number of voters ranking of candidates

1 2m + 1 c d B w
2 2n + 2k(n − 1) + 3 c w d B
3 2n(k + 1) + 5 w c d B
4 i ∈ {1, . . . ,n} 2(k + 1) d Si c w (B − Si)

5 j ∈ {1, . . . ,m} 2 d b j w c (B − {b j})
6 2(k + 1) d w c B

We will show the following lemma that is used to establish the upcoming results.

Lemma 3.7. Consider the election (C, V ) constructed according to Construction 3.6 from a RHS instance (B, S, k).

1. c is the unique level 2 BV winner of election ({c, d, w}, V ).
2. If S has a hitting set B ′ of size k, then w is the unique BV winner of election (B ′ ∪ {c, d, w}, V ).
3. Let D ⊆ B ∪ {d, w}. If c is not a unique BV winner of election (D ∪ {c}, V ), then there exists a set B ′ ⊆ B such that

(a) D = B ′ ∪ {d, w},
(b) w is a level 2 BV winner of election (B ′ ∪ {c, d, w}, V ), and
(c) B ′ is a hitting set for S of size at most k.

Proof. For the first part, note that there is no level 1 BV winner in election ({c, d, w}, V ) and we have the following level 2 
scores in this election:

score2
({c,d,w},V )(c) = 6n(k + 1) + 2(m − k) + 9,

13 Their construction was also useful in the proofs of most candidate control results for SP-AV [25], so the structure of the constructions and the arguments 
in the proofs of Lemma 3.7 and Theorem 3.9 are adaptations of those by Hemaspaandra et al. [43] and Erdélyi et al. [25], tailored here to Bucklin voting.
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score2
({c,d,w},V )(d) = 2n(k + 1) + 4m + 2k + 3,

score2
({c,d,w},V )(w) = 4n(k + 1) + 2m + 10.

Since n > m (which implies n > k), we have:

score2
({c,d,w},V )(c) − score2

({c,d,w},V )(d) = 4n(k + 1) − (2m + 4k) + 6 > 0,

score2
({c,d,w},V )(c) − score2

({c,d,w},V )(w) = 2n(k + 1) − (2k + 1) > 0.

Thus, c is the unique level 2 BV winner of election ({c, d, w}, V ).
For the second part, suppose that B ′ is a hitting set for S of size k. Then there is no level 1 BV winner in election 

(B ′ ∪ {c, d, w}, V ), and we have the following level 2 scores:

score2
(B ′∪{c,d,w},V )(c) = 4n(k + 1) + 2(m − k) + 9,

score2
(B ′∪{c,d,w},V )(d) = 2n(k + 1) + 4m + 2k + 3,

score2
(B ′∪{c,d,w},V )(w) = 4n(k + 1) + 2(m − k) + 10,

score2
(B ′∪{c,d,w},V )(b j) ≤ 2n(k + 1) + 2 for all b j ∈ B ′.

It follows that w is the unique level 2 BV winner of election (B ′ ∪ {c, d, w}, V ).
For the third part, let D ⊆ B ∪ {d, w}. Suppose c is not a unique BV winner of election (D ∪ {c}, V ).

(3a) Besides c, only w has a strict majority of votes on the second level and only w can tie or beat c in (D ∪ {c}, V ). Thus, 
since c is not a unique BV winner of election (D ∪{c}, V ), w is clearly in D . In (D ∪{c}, V ), candidate w has no level 1 
strict majority and candidate c has already on level 2 a strict majority. Thus, w must tie or beat c on level 2. For a 
contradiction, suppose d /∈ D . Then

score2
(D∪{c},V )(c) ≥ 4n(k + 1) + 2m + 11;

score2
(D∪{c},V )(w) = 4n(k + 1) + 2m + 10,

which contradicts the above observation that w ties with or beats c on level 2. Thus, D = B ′ ∪ {d, w}, where B ′ ⊆ B .
(3b) This part follows immediately from the proof of part (3a).
(3c) Let � be the number of sets in S not hit by B ′ . We have that

score2
(B ′∪{c,d,w},V )(w) = 4n(k + 1) + 10 + 2

(
m − ∥∥B ′∥∥)

,

score2
(B ′∪{c,d,w},V )(c) = 2(m − k) + 4n(k + 1) + 9 + 2(k + 1)�.

From part (3b) we know that score2
(B ′∪{c,d,w},V )

(w) ≥ score2
(B ′∪{c,d,w},V )

(c), so

4n(k + 1) + 10 + 2
(
m − ∥∥B ′∥∥) ≥ 2(m − k) + 4n(k + 1) + 9 + 2(k + 1)�.

The above inequality implies 1 > 1
2 ≥ ‖B ′‖ − k + (k + 1)�.

Since T = ‖B ′‖ − k + (k + 1)� is an integer, we have T ≤ 0. If T = 0 then � = 0 and ‖B ′‖ = k. Now assume T < 0. If � = 0, B ′
is a hitting set with ‖B ′‖ < k, and if � > 0 then (k + 1)� > k, which contradicts T = ‖B ′‖ − k + (k + 1)� < 0. In each possible 
case, we have a hitting set (as � = 0) of size at most k.

Note that the third part also holds when c is not a winner in election (D ∪ {c}): Parts (3a) and (3b) follow immedi-
ately while in part (3c) the only change is that score2

(B ′∪{c,d,w},V )
(w) > score2

(B ′∪{c,d,w},V )
(c) which directly leads to case of 

T = 0. �
Now we are ready to handle the eight remaining cases of candidate control.

Theorem 3.8. Bucklin voting is resistant to constructive and destructive control by adding an unlimited number of candidates. 
Furthermore, Bucklin voting is resistant to constructive and destructive control by adding a limited number of candidates and is pa-
rameterizedly resistant when these two control problems are parameterized by the number of candidates added. Each result holds in 
both winner models.

Proof. Susceptibility holds by Lemma 3.1. NP-hardness follows immediately from Lemma 3.7, via mapping the RHS instance 
(B, S, k) either to the instance (({c, d, w} ∪ B, V ), w) of CCAUC, or to the instance (({c, d, w} ∪ B, V ), c) of DCAUC, or to the 
instance (({c, d, w} ∪ B, V ), k, w) of CCAC, or to the instance (({c, d, w} ∪ B, V ), k, c) of DCAC, where in each case c, d, and 
w are the qualified candidates and B is the set of spoiler candidates. �
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Theorem 3.9. Bucklin voting is resistant to constructive and destructive control by partition of candidates and by run-off partition of 
candidates (for each in both tie-handling models, TE and TP). Each result holds in both winner models.

Proof. Susceptibility holds by Lemma 3.1, so it remains to show NP-hardness. For the constructive cases, map the given RHS

instance (B, S, k) to the election (C, V ) from Construction 3.6 with w being the distinguished candidate. We claim that S
has a hitting set of size at most k if and only if w can be made the unique BV winner by exerting control via any of our 
four control scenarios (partition of candidates with or without run-off, and for each in either tie-handling model, TE and 
TP).

From left to right: Suppose S has a hitting set B ′ ⊆ B of size k. Partition the set of candidates into the two subsets 
C1 = B ′ ∪ {c, d, w} and C2 = C − C1. According to Lemma 3.7, w is the unique level 2 BV winner of subelection (C1, V ) =
(B ′ ∪ {c, d, w}, V ). No matter whether we have a run-off or not, and regardless of the tie-handling rule used, the opponents 
of w in the final stage (if there are any opponents at all) each are candidates from B . Since n > m, w has a majority in the 
final stage on the first level with a score of 4n(k + 1) + 9. Thus, w is the unique BV winner of the resulting election.

From right to left: Suppose w can be made the unique BV winner via any of our four control scenarios. Since c is not a 
BV winner of the election, there is a subset D ⊆ B ∪ {d, w} of candidates such that c is not a unique BV winner of election 
(D ∪ {c}, V ). By Lemma 3.7, there exists a hitting set for S of size at most k.

For the four destructive cases, we simply change the roles of c and w in the above argument.
The above proof works both in the unique-winner and the co-winner model. �

Corollary 3.10. Fallback voting is resistant to constructive and destructive control by partition of candidates and by run-off partition 
of candidates (for each in both tie-handling models, TE and TP). Each result holds in both winner models.

3.4. Voter control

Turning now to voter control for Bucklin voting and fallback voting, we start with control by adding and deleting vot-
ers, where we have both (classical) resistance and parameterized resistance results. As in the previous section, recall that 
“parameterized resistance” (the R∗ entries in Table 1) refers to W[2]-hardness of the corresponding control problem with 
respect to a specified parameter, and that “resistance” (the R entries in Table 1) refers to NP-hardness of the corresponding 
control problem. Again, recall from Section 2.3 that in the reductions to be presented in this section, the elections con-
structed will always contain a subset B of candidates, where each candidate bi corresponds to the element bi from the 
set B given in the (parameterized) decision problem the reduction starts from, and it will always be clear from the context 
whether bi is meant to be a candidate or an element.

Theorem 3.11. Bucklin voting is resistant to constructive control by adding voters, and is parameterizedly resistant when this control 
problem is parameterized by the number of voters added. Each result holds in both winner models.

Proof. Again, in light of Remark 2.4 it is enough to give one reduction that proves both claims at the same time. Let 
(G, k) with G = (B, E) be a given instance of k-Dominating Set as described above. Define the election (C, V ∪ U ), where 
C = {c, w} ∪ B ∪ X ∪ Y is the set of candidates, w is the distinguished candidate, and X and Y are sets of padding candidates 
(recall Footnote 12).

Padding candidates in X : X is a set of 
∑n

i=1 ‖N[bi]‖ candidates such that for each i, 1 ≤ i ≤ n, we can find a subset Xi ⊆ X
with ‖N[bi]‖ elements such that Xr ∩ Xs = ∅ for all r, s ∈ {1, . . . , n} with r �= s. These subsets ensure that w is always 
placed at the (n + 1)st position in the votes of the unregistered voters in U below.

Padding candidates in Y : Y is a set of n padding candidates ensuring that none of the candidates in B is ranked among 
the first n candidates in the votes of the registered voters in V below.

V is the collection of registered and U is the collection of unregistered voters. V ∪ U consists of the following n + k − 1
voters:

Voter list For each . . . number of voters ranking of candidates

V k − 1 c Y B w X
U i ∈ {1, . . . ,n} 1 (B − N[bi ]) Xi w c (N[bi ] ∪ (X − Xi) ∪ Y )

Clearly, c is the unique level 1 Bucklin winner of election (C, V ).
We claim that G has a dominating set of size k if and only if w can be made the unique Bucklin winner by adding at 

most k voters from U .
From left to right: Suppose G has a dominating set B ′ of size k. Add the corresponding voters from U to the election 

(i.e., each voter ui for which bi ∈ B ′). Now we have an election with 2k − 1 voters, so the strict majority threshold is k. 
Since B ′ is a dominating set, we have B = N[B ′], so for each b j ∈ B there is at least one of the added voters ui such that 
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b j ∈ N[bi], which means that b j is ranked to the right of w in these k added votes. It follows that up to level n + 1 only 
candidate w will reach this threshold of k, hence w is the unique Bucklin winner of this election.

From right to left: Suppose w can be made the unique Bucklin winner by adding at most k voters from U . Denote the 
set of these voters by U ′ and note that ‖U ′‖ ≤ k. Note further that score1

(C,V ∪U ′)(c) = score1
(C,V )(c) = k − 1, that is, c reaches 

a score of k − 1 already on the first level (with or without adding U ′). However, if any candidate has a strict majority 
already on the first level, then he or she is the unique Bucklin winner of the election. As w is the unique Bucklin winner of 
election (C, V ∪ U ′), the strict majority threshold for V ∪ U ′ must be greater than k − 1. This, in turn, implies ‖U ′‖ ≥ k, so 
‖U ′‖ = k and the strict majority threshold for V ∪ U ′ is exactly k. Note that scoren+1

(C,V ∪U ′)(w) = k > k − 1 = scoren+1
(C,V ∪U ′)(x)

and scoren
(C,V ∪U ′)(w) = 0. Moreover, since adding the voters from U ′ to the election has made w the unique Bucklin winner 

of election (C, V ∪ U ′), none of the candidates in B can be ranked among the first n candidates by each voter in U ′; 
otherwise (i.e., if some candidate b j ∈ B would be ranked among the first n candidates by each voter in U ′), we would have 
scoren

(C,V ∪U ′)(b j) = k, i.e., b j would reach a strict majority in (C, V ∪ U ′) earlier than w , a contradiction. But this means that 
the voters in U ′ correspond to a dominating set of size k in G .

Note that this polynomial-time reduction is parameterized, as the given parameter k of k-Dominating Set is the same 
parameter k that bounds the number of voters allowed to be added in this control problem.

The above proof works both in the unique-winner and the co-winner model. �
Corollary 3.12. Fallback voting is resistant to constructive control by adding voters, and is parameterizedly resistant when this control 
problem is parameterized by the number of voters added. Each result holds in both winner models.

In contrast to Corollary 3.12, fallback voting is vulnerable to destructive control by adding voters and, as we will see 
later in Theorem 3.17, it is also vulnerable to destructive control by deleting voters. In fact, the proof of Theorem 3.13
shows something slightly stronger: Fallback voting is what Hemaspaandra et al. [43] call “certifiably vulnerable” to this type 
of destructive voter control, i.e., the algorithm showing vulnerability to destructive control by adding voters not only decides 
whether or not control is possible but it even computes a successful control action if one exists. Note that in the proof of 
Theorem 3.13, after giving a high-level description of the algorithm, we present the algorithm in detail and argue for its 
correctness as we go. Therefore, we refrain from giving a formal presentation (e.g., in pseudocode, which would be a bit 
cumbersome to read). Note further that the algorithm is not designed so as to optimizing its runtime (as then it might 
be harder to see it is correct); rather, we focus on clarity regarding the arguments for correctness. Thus, we give an upper 
bound for the runtime (with respect to the number of candidates in the given election) that still might be improved.

Theorem 3.13. Fallback voting is vulnerable to destructive control by adding voters in both winner models, via algorithms each having 
a worst-case runtime in O(m2(n′ + p(n + n′))), where m is the number of candidates, n (respectively, n′) is the number of votes in 
V (respectively, in V ′), and p(x) is a polynomial giving an upper bound for the time needed to compute the level scores in an election 
with x voters.

Proof. Susceptibility holds by Corollary 3.2. We present a polynomial-time algorithm for solving the destructive control by 
adding voters case. We will make use of the following notation. Given an election (C, V ), recall that maj(V ) = �‖V ‖/2� + 1
denotes the strict majority threshold for V , and define the deficit of candidate d ∈ C for reaching a strict majority in (C, V )

on level i, 1 ≤ i ≤ ‖C‖, by

def i
(C,V )(d) = maj(V ) − scorei

(C,V )(d).

Similarly, define the surplus of candidate d ∈ C over a strict majority in (C, V ) on level i, 1 ≤ i ≤ ‖C‖, by

surplusi
(C,V )(d) = scorei

(C,V )(d) − maj(V ) = −def i
(C,V )(d).

The input to our algorithm is an election (C, V ∪ V ′) (where C is the set of candidates, V is the collection of registered 
voters, and V ′ is the collection of unregistered voters), a distinguished candidate c ∈ C , and an integer � (the number of 
voters allowed to be added). The algorithm either outputs a sublist V ′′ ⊆ V ′ , ‖V ′′‖ ≤ �, that describes a successful control 
action (if any exists), or indicates that control is impossible for this input.

We give a high-level description of the algorithm. We assume that c is initially the unique FV winner of election (C, V ); 
otherwise, the algorithm simply outputs V ′′ = ∅ and halts, since there is no need to add any voters from V ′ . Let k be the 
largest number of candidates any voter in V ∪ V ′ approves of. Clearly, k ≤ ‖C‖. The algorithm proceeds in at most k + 1
stages, where the last stage is the approval stage that checks whether c can be dethroned as a unique FV winner by approval 
score via adding at most � voters from V ′ , and all preceding stages are majority stages that check whether a candidate d �= c
can tie or beat c on level i via adding at most � voters from V ′ . Since the first majority stage is slightly different from the 
subsequent majority stages, we describe both cases separately.

Majority stage 1 For each candidate d ∈ C − {c}, check whether d can tie or beat c on the first level via adding at most �
voters from V ′ . To this end, find a list V ′

d ⊆ V ′ of largest cardinality such that ‖V ′
d‖ ≤ � and all voters in V ′

d approve of d
on the first level. Check whether



648 G. Erdélyi et al. / Journal of Computer and System Sciences 81 (2015) 632–660
score1
(C,V ∪V ′

d)
(d) ≥ score1

(C,V ∪V ′
d)

(c). (1)

If (1) fails to hold, this d is hopeless, so go to the next candidate (or to the next stage if all other candidates have already 
been checked in this stage). If (1) holds, check whether d has a strict majority in (C, V ∪ V ′

d) on the first level, and if so, 
output V ′′ = V ′

d and halt. Otherwise, this d is hopeless, so go to the next candidate (or stage).

Majority stage i, 1 < i ≤ k This stage is entered only if it was not possible to find a successful control action in majority 
stages 1, . . . , i − 1. For each candidate d ∈ C − {c}, check whether d can tie with or beat c up to the ith level via adding at 
most � voters from V ′ . To this end, find a list V ′

d ⊆ V ′ of largest cardinality such that ‖V ′
d‖ ≤ � and all voters in V ′

d approve 
of d up to the ith level but disapprove of c up to the ith level. Check whether

scorei
(C,V ∪V ′

d)
(d) ≥ scorei

(C,V ∪V ′
d)

(c). (2)

If (2) fails to hold, this d is hopeless, so go to the next candidate (or to the next stage if all other candidates have already 
been checked in this stage). If (2) holds, check whether d has a strict majority in (C, V ∪ V ′

d) on the ith level, and if so, 
check whether

scorei−1
(C,V ∪V ′

d)
(c) ≥ maj

(
V ∪ V ′

d

)
. (3)

If (3) fails to hold, output V ′′ = V ′
d and halt. Otherwise (i.e., if (3) holds), though d might dethrone c by adding V ′

d on the ith 
level, it was not quick enough: c has already won earlier. In that case, find a largest list V ′

cd ⊆ V ′ such that (i) ‖V ′
d ∪ V ′

cd‖ ≤ �, 
(ii) all voters in V ′

cd approve of both c and d up to the ith level, and (iii) the voters in V ′
cd are chosen such that c is approved 

of exactly on level i. Now, check whether

scorei−1
(C,V ∪V ′

d∪V ′
cd)

(c) ≥ maj
(

V ∪ V ′
d ∪ V ′

cd

)
. (4)

If (4) fails to hold, check whether ‖V ′
cd‖ ≥ 2 def i

(C,V ∪V ′
d)

(d). If so (note that d has now a strict majority on level i), output 
V ′′ = V ′

d ∪ V ′
cd and halt. Note that, by choice of V ′

cd , (2) implies that

scorei
(C,V ∪V ′

d∪V ′
cd)

(d) ≥ scorei
(C,V ∪V ′

d∪V ′
cd)

(c).

Thus, in (C, V ∪ V ′
d ∪ V ′

cd), d ties with or beats c and has a strict majority on the ith level (and now, we are sure that d

was not too late). Otherwise (i.e., if ‖V ′
cd‖ < 2 def i

(C,V ∪V ′
d)

(d)), or if (4) holds, though d might dethrone c by adding V ′
d ∪ V ′

cd

on the ith level, it was still not quick enough: c has already won earlier. In that case, find a largest list V ′
∅ ⊆ V ′ such that 

(i) ‖V ′
d ∪ V ′

cd ∪ V ′
∅‖ ≤ � and (ii) all voters in V ′

∅ disapprove of both c and d up to the ith level. Check whether

scorei−1
(C,V ∪V ′

d∪V ′
cd∪V ′∅)

(c) ≥ maj
(

V ∪ V ′
d ∪ V ′

cd ∪ V ′
∅
)
. (5)

If (5) holds, then d is hopeless, so go to the next candidate (or to the next stage if all other candidates have already been 
checked in this stage). Otherwise (i.e., if (5) fails to hold), check whether

∥∥V ′
∅
∥∥ ≤ 2 surplusi

(C,V ∪V ′
d∪V ′

cd)
(d)

(
if

∥∥V ∪ V ′
d ∪ V ′

cd

∥∥ is odd
)

or∥∥V ′
∅
∥∥ < 1 + 2 surplusi

(C,V ∪V ′
d∪V ′

cd)
(d)

(
if

∥∥V ∪ V ′
d ∪ V ′

cd

∥∥ is even
)
.

If so (note that d has a strict majority on level i), output V ′′ = V ′
d ∪ V ′

cd ∪ V ′
∅ and halt. Note that, by choice of V ′

∅ , 
(2) again implies that scorei

(C,V ∪V ′
d∪V ′

cd∪V ′∅)
(d) ≥ scorei

(C,V ∪V ′
d∪V ′

cd∪V ′∅)
(c). Thus, in (C, V ∪ V ′

d ∪ V ′
cd ∪ V ′

∅), d ties with or beats 

c and has a strict majority on the ith level (and d was not too late). Otherwise (i.e., if ‖V ′
∅‖ > 2 surplusi

(C,V ∪V ′
d∪V ′

cd)
(d) or 

‖V ′
∅‖ > 1 + 2 surplusi

(C,V ∪V ′
d∪V ′

cd)
(d) if ‖V ∪ V ′

d ∪ V ′
cd‖ is odd or even, respectively), this d is hopeless, so go to the next 

candidate (or stage).

Approval stage This stage is entered only if it was not possible to find a successful control action in majority stages 
1, 2, . . . , k. First, check if

score(C,V )(c) <

⌊‖V ‖ + �

2

⌋
+ 1. (6)

If (6) fails to hold, output “control impossible” and halt, since we have found no candidate in the majority stages who could 
tie or beat c and would have a strict majority when adding at most � voters from V ′ , so adding any choice of at most �
voters from V ′ would still leave c with a strict majority. If (6) holds, looping over all candidates d ∈ C − {c}, check whether 
there are score(C,V )(c) − score(C,V )(d) ≤ � voters in V ′ who approve of d and disapprove of c. If this is not the case, move 
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on to the next candidate, since d could never catch up on c via adding at most � voters from V ′ . If it is the case for some 
d ∈ C − {c}, however, add this list of voters (call it V ′

d) and check whether

score(C,V ∪V ′
d)(c) < maj

(
V ∪ V ′

d

)
. (7)

If (7) holds, output V ′′ = V ′
d and halt. Otherwise (i.e., if (7) fails to hold), check whether

� − ‖V ′
d‖ ≥ ‖V ′

∅‖
≥ 2

(
score(C,V ∪V ′

d)(c) − ‖V ∪ V ′
d‖

2

)
, (8)

where V ′
∅ consists of those voters in V ′ who disapprove of both candidates, c and d. If (8) does not hold, move on to the 

next candidate, since after adding these voters c would still have a strict majority. Otherwise (i.e., if (8) holds), add exactly 
2(score(C,V ∪V ′

d)(c) − ‖V ∪V ′
d‖/2) voters from V ′

∅ (denoted by V ′
∅,+). Output V ′′ = V ′

d ∪ V ′
∅,+ and halt.

If we have entered the approval stage (because we were not successful in any of the majority stages), but couldn’t find 
any candidate here who was able to dethrone c by adding at most � voters from V ′ , we output “control impossible” and 
halt.

The correctness of the algorithm can be seen as follows. If candidate c is not the unique winner of the election, the 
algorithm correctly outputs ∅ and terminates. Let d ∈ C − {c} be a candidate who ties with or beats c on level i by adding 
at most � votes, and suppose there is no other candidate who can tie with or beat c by adding at most � voters on a level 
prior to i. We now argue that our algorithm will either find this candidate (and will also output the set of votes to add) or 
a different candidate who can tie with or beat c on level i after adding at most � voters.

It is easy to see that the algorithm only stops in a majority stage if the following three necessary conditions are satisfied:

1. d’s level i score is at least as high as c’s level i score,
2. d has a strict majority on level i, and
3. c has no strict majority on level i − 1.

If the algorithm stops before checking candidate d in majority stage i, then it found a different candidate who could tie with 
or beat candidate c on level i. Otherwise, when checking candidate d on level i, (2) and the fact that we do not add voters 
who approve of c and disapprove of d until level i guarantees that d ties with or beats c by score on level i. Furthermore, by 
adding the maximal sized voter set, in which each voter approves of d until level i, the algorithm provides a strict majority 
(which exists according to our starting assumption) on level i for candidate d. Because of the algorithm’s “surplus-check,” 
this strict majority will not be destroyed even after adding (in some cases) some voters who do not approve of d. Finally, 
depending on how many voter groups the algorithm adds, (3), (4), or (5) ensure that c has not a strict majority on level i −1.

It remains to deal with the issue that there is no candidate who can dethrone c on any of the majority stages. Since there 
is no candidate satisfying the three necessary conditions, the algorithm would not stop until reaching the approval stage. 
Clearly, the algorithm only outputs a successful addition of voters if c has no strict majority on any level and there exists 
a candidate whose approval score is at least as high as c’s. Otherwise, the algorithm gives the correct answer that control 
is impossible and halts. Crucially, note that the algorithm proceeds in the “safest way possible”: If there is any successful 
control action then our algorithm finds some successful control action.

The algorithm runs in polynomial time as it proceeds in at most k + 1 ≤ m + 1 stages, where in each stage certain 
conditions are checked for up to m − 1 candidates. For checking the conditions we have to go through the list V ′ and 
compute level scores over at most n + n′ voters, each a constant number of times. Thus, the algorithm’s worst-case runtime 
is in O(m2(n′ + p(n + n′))). (Recall that we didn’t optimize it in terms of its runtime; rather, we described it in a way to 
make it easier to check its correctness.)

Note that by changing the “greater than or equal to” conditions to “strictly greater than” conditions every time the 
algorithm compares the score of d and c, the same algorithm works in the co-winner model, too. �
Corollary 3.14. Bucklin voting is vulnerable to destructive control by adding voters in both winner models.

We now turn to the case of deleting voters and we start with the constructive control scenario.

Theorem 3.15. Bucklin voting is resistant to constructive control by deleting voters, and is parameterizedly resistant when this control 
problem is parameterized by the number of voters deleted. Each result holds in both winner models.

Proof. In light of Remark 2.4, we again will give only one reduction that proves both claims at the same time. To prove 
W[2]-hardness in the unique-winner model, we again provide a reduction from k-Dominating Set. Let (G, k) with G =
(B, E) be a given instance of this problem as described at the start of this section. Define the election (C, V ), where 
C = {c, w} ∪ B ∪ X ∪ Y ∪ Z is the set of candidates, w is the distinguished candidate, and X , Y , and Z are sets of padding 
candidates (recall Footnote 12).
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Table 4
Level i scores in (C, V ) for i ∈ {1, n + 1} and the candidates in B ∪ {c, w}.

c w b j ∈ B

score1 k − 1 0 ≤ n
scoren+1 n + k − 1 n n

Padding candidates in X : X is a set of 
∑n

i=1 ‖B − N[bi]‖ candidates such that for each i, 1 ≤ i ≤ n, we can find a subset 
Xi ⊆ X with n − ‖N[bi]‖ elements such that Xr ∩ Xs = ∅ for all r, s ∈ {1, . . . , n} with r �= s. These subsets ensure that c
is always placed among the top (n + 1) positions in the first voter group of V below.

Padding candidates in Y : Y is a set of 
∑n

i=1 ‖N[bi]‖ candidates such that for each i, 1 ≤ i ≤ n, we can find a subset Yi ⊆ Y
with ‖N[bi]‖ elements such that Yr ∩ Ys = ∅ for all r, s ∈ {1, . . . , n} with r �= s. These subsets ensure that w is always 
placed at the (n + 1)st position in the second voter group of V below.

Padding candidates in Z : Z is a set of (k − 1)(n + 1) candidates such that for each j, 1 ≤ j ≤ k − 1, we can find a subset 
Z j ⊆ Z with n + 1 elements such that Zr ∩ Zs = ∅ for all r, s ∈ {1, . . . , k − 1} with r �= s. These subsets ensure that no 
other candidate besides c and the candidates in Z j gain any points up to the (n + 2)nd level in the third voter group of 
V below.

V is the following collection of 2n + k − 1 voters:

# For each . . . number of votes ranking of candidates

1 i ∈ {1, . . . ,n} 1 N[bi ] c Xi ((B − N[bi ]) ∪ (X − Xi) ∪ Y ∪ Z) w
2 i ∈ {1, . . . ,n} 1 (B − N[bi ]) Yi w (N[bi ] ∪ X ∪ (Y − Yi) ∪ Z ∪ {c})
3 j ∈ {1, . . . ,k − 1} 1 c Z j (B ∪ X ∪ Y ∪ (Z − Z j)) w

The relevant scores in (C, V ) can be seen in Table 4 above.
It holds that n + k − 1 > maj(V ) > n. Since candidate w reaches a strict majority only on the last level but c does so no 

later than on the (n + 1)st level, w is not a unique Bucklin winner of this election.
We claim that G has a dominating set of size k if and only if w can be made the unique Bucklin winner by deleting at 

most k voters.
From left to right: Suppose G has a dominating set B ′ of size k. Delete the corresponding voters from the first voter 

group (i.e., each voter vi for which bi ∈ B ′). Let V ′ denote the resulting set of voters and note that ‖V ′‖ = 2n − 1. Now, in 
election (C, V ′) we have on level n + 1:

• scoren+1
(C,V ′)(b j) ≤ n −1 for each b j ∈ B (from the first and second voter groups; no b j can have a score of n on level n +1, 

since B ′ is a dominating set in G , so B = N[B ′], and all voters vi corresponding to members bi of B ′ have been deleted),
• scoren+1

(C,V ′)(c) = (n − k) + (k − 1) = n − 1 (from the first and third voter groups),

• scoren+1
(C,V ′)(xi) = 1 for each xi ∈ X (from the first voter group),

• scoren+1
(C,V ′)(yi) = 1 for each yi ∈ Y (from the second voter group),

• scoren+1
(C,V ′)(zi) = 1 for each zi ∈ Z (from the third voter group), and

• scoren+1
(C,V ′)(w) = n (from the second voter group).

That is, only candidate w reaches a strict majority on level n + 1 in (C, V ′), so w is the unique Bucklin winner of this 
election.

From right to left: Suppose w can be made the unique Bucklin winner by deleting at most k voters. Let V ′ be the set 
of remaining voters. Observe that deleting less than k voters would make it impossible for candidate w to be a unique 
Bucklin winner of the election. Indeed, if less than k voters are deleted from V , the strict majority threshold for the set V ′
of remaining voters would exceed n. However, since w is ranked last place in all votes except the n votes from the second 
voter group, w would reach a strict majority no earlier than on the last level and thus would not be a unique Bucklin 
winner of this election. Clearly, w has to win election (C, V ′) on level n + 1. Since scoren+1

(C,V )(bi) = n = scoren+1
(C,V )(w) for all 

i with 1 ≤ i ≤ n, by deleting these k votes from V each bi has to lose at least one point on the first n + 1 levels. Obviously, 
no voters from the second voter group can be deleted, for otherwise candidate w would not reach the strict majority 
threshold on level n + 1. Similarly, deleting voters from the third voter group does not make any bi ∈ B lose any points 
up to level n + 1. So at least part of the deleted voters have to be from the first voter group, let us say we delete k′ ≤ k. 
Since every candidate bi ∈ B has to lose at least one point up to level n + 1, the k′ deleted voters in V − V ′ correspond to a 
dominating set in G . If k′ < k, we can delete voters arbitrarily from the first and/or third voter group until the total allowed 
number of k deleted voters is reached (that is needed to ensure the right majority threshold in the new election).

Note that this polynomial-time reduction is parameterized, as the given parameter k of k-Dominating Set is the same 
parameter k that bounds the number of voters that may be deleted in this control problem.
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To show (parameterized) resistance also in the co-winner model, the voter list has to be slightly adapted: One voter of 
group 3 has to be deleted (thus, j ∈ {1, . . . , k − 2}) and one voter (the only one in a new, fourth group) with preference 
B c (X ∪ Y ∪ Z) has to be added. �
Corollary 3.16. Fallback voting is resistant to constructive control by deleting voters, and is parameterizedly resistant when this control 
problem is parameterized by the number of voters deleted. Each result holds in both winner models.

The following theorem is stated without proof, since the algorithm for destructive control by adding voters presented 
in the proof of Theorem 3.13 can easily be adapted to the deleting-voters case (and listing all changes would be long and 
tedious).

Theorem 3.17. Fallback voting is vulnerable to destructive control by adding voters, in both winner models.

Corollary 3.18. Bucklin voting is vulnerable to destructive control by adding voters, in both winner models.

We now turn to control by partition of voters.

Theorem 3.19. Bucklin voting is resistant to constructive control by partition of voters in both tie-handling models, TE and TP, each in 
both winner models.

Proof. Susceptibility holds by Lemma 3.1. To show NP-hardness we reduce X3C to our control problems. Let (B, S) be an 
X3C instance with B = {b1, b2, . . . , b3m}, m > 1, and a collection S = {S1, S2, . . . , Sn} of subsets Si ⊆ B with ‖Si‖ = 3 for 
each i, 1 ≤ i ≤ n. We define the election (C, V ), where C = B ∪ {c, w, x} ∪ D ∪ E ∪ F ∪ G is the set of candidates, w is the 
distinguished candidate, and D , E , F , and G are sets of padding candidates (recall Footnote 12).

Subsets B1, B2, . . . , Bn of B: These are n subsets of B (in general, not disjoint) that are defined such that each candidate 
in B gains exactly n points in total up to level 3m from the first and the second voter group of V below. With � j =
‖{Si ∈ S | b j ∈ Si}‖ for each j, 1 ≤ j ≤ 3m, these subsets are formally defined by Bi = {b j ∈ B | i ≤ n − � j} for each i, 
1 ≤ i ≤ n.

Padding candidates in D: D is a set of 3nm candidates such that for each i, 1 ≤ i ≤ n, we can find a subset Di ⊆ D with 
3m − ‖Bi‖ elements such that Dr ∩ Ds = ∅ for all r, s ∈ {1, . . . , n} with r �= s. These subsets ensure that w is always 
placed at position 3m + 1 in the second voter group of V below.

Padding candidates in E: E is a set of (3m − 1)(m + 1) candidates such that for each k, 1 ≤ k ≤ m + 1, we can find a subset 
Ek ⊆ E with 3m − 1 elements such that Er ∩ Es = ∅ for all r, s ∈ {1, . . . , m + 1} with r �= s. These subsets ensure that 
no other candidate besides c and x gains more than one point up to the (3m + 1)st level in the third voter group of V
below.

Padding candidates in F : F is a set of (3m + 1)(m − 1) candidates such that for each l, 1 ≤ l ≤ m − 1, we can find a subset 
Fl ⊆ F with 3m + 1 elements such that Fr ∩ Fs = ∅ for all r, s ∈ {1, . . . , m − 1} with r �= s. These subsets ensure that c
does not gain any points up to level 3m + 1 in the fourth voter group of V below.

Padding candidates in G : G is a set of n(3m − 3) candidates such that for each i, 1 ≤ i ≤ n, we can find a subset Gi ⊆ G
with 3m − 3 elements such that Gr ∩ Gs = ∅ for all r, s ∈ {1, . . . , n} with r �= s. These subsets ensure that no other 
candidate besides c and those in Si gains more than one point up to level 3m + 1 in the first voter group of V below.

Let V consist of the following 2n + 2m voters:

# For each . . . number of votes ranking of candidates

1 i ∈ {1, . . . ,n} 1 c Si Gi (G − Gi) F D E (B − Si) w x
2 i ∈ {1, . . . ,n} 1 Bi Di w G E (D − Di) F (B − Bi) c x
3 k ∈ {1, . . . ,m + 1} 1 x c Ek F (E − Ek) G D B w
4 l ∈ {1, . . . ,m − 1} 1 Fl c (F − Fl) G D E B w x

The strict majority threshold is reached with n + m + 1 points and Table 5 shows the scores on the relevant levels in 
election (C, V ).

Clearly, candidate c is the unique level 2 BV winner in election (C, V ) with a level 2 score of n + m + 1.
We claim that S has an exact cover S ′ for B if and only if w can be made the unique BV winner of the resulting election 

by partition of voters (regardless of the tie-handling model used).
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Table 5
Level i scores in (C, V ) for i ∈ {1, 2, 3m, 3m + 1} and the candidates in B ∪ {c, w, x}.

c b j w x

score1 n ≤ n 0 m + 1
score2 n + m + 1 ≤ n 0 m + 1
score3m n + m + 1 n 0 m + 1
score3m+1 n + m + 1 n n m + 1

Table 6
Level i scores in (C, V 1) and (C, V 2) for i ∈ {1, 2, 3m, 3m + 1} and the candidates in B ∪ {c, w, x}.

(C, V 1) (C, V 2)

c b j x c b j w

score1 m 0 m + 1 n − m ≤ n − 1 0
score2 2m + 1 ≤ 1 m + 1 n − m ≤ n − 1 0
score3m 2m + 1 1 m + 1 n − m n − 1 0
score3m+1 2m + 1 1 m + 1 n − m n − 1 n

Table 7
Level i scores of w and x in the final election ({w, x}, V ) for i ∈ {1, 2}.

x w

score1 m + 1 2n + m − 1
score2 2n + 2m 2n + 2m

From left to right: Suppose S has an exact cover S ′ for B . Partition V as follows. Let V 1 consist of:

• the m voters of the first group that correspond to the exact cover (i.e., those m voters of the form c Si Gi (G −Gi) F D
E (B − Si) w x for which Si ∈ S ′) and

• the m + 1 voters of the third group (i.e., all voters of the form x c Ek F (E − Ek) G D B w).

Let V 2 = V − V 1. Table 6 shows the relevant scores in the two subelections.
In subelection (C, V 1), candidate x is the unique level 1 BV winner. In subelection (C, V 2), candidate w is the first 

candidate who has a strict majority and moves on to the final round of the election. Thus there are w and x in the final 
run-off, which w wins with a strict majority on the first level as can be seen in Table 7 presenting the scores of x and w
in the final election.

Since both subelections, (C, V 1) and (C, V 2), have unique BV winners, candidate w can be made the unique BV winner 
by partition of voters, regardless of the tie-handling model used.

From right to left: Suppose that w can be made the unique BV winner by exerting control by partition of voters (for 
concreteness, say in TP). Let (V 1, V 2) be such a successful partition. Since w wins the resulting two-stage election, w has 
to win at least one of the subelections (say, w wins (C, V 2)). If candidate c participates in the final round, he or she wins 
the election with a strict majority no later than on the second level, no matter which other candidates move forward to the 
final election. That means that in both subelections, (C, V 1) and (C, V 2), c must not be a BV winner. Only in the second 
voter group candidate w (who has to be a BV winner in election (C, V 2)) gets points earlier than on the second-to-last 
level. So w has to be a level 3m + 1 BV winner in election (C, V 2) via votes from the second voter group in V 2. As c scores 
already on the first two levels in voter groups 1 and 3, only x and the candidates in B can prevent c from winning in 
(C, V 1). However, since voters from the second voter group have to be in V 2 (as stated above), in subelection (C, V 1) only 
candidate x can prevent c from moving forward to the final round. Since x is always placed behind c in all votes except 
those votes from the third voter group, x has to be a level 1 BV winner in election (C, V 1). In (C, V 2) candidate w gains 
all the points on exactly the (3m + 1)st level, whereas the other candidates scoring more than one point up to this level 
receive their points on either earlier or later levels, so no candidate can tie with w on the (3m + 1)st level and w is the 
unique level 3m + 1 BV winner in election (C, V 2). As both subelections, (C, V 1) and (C, V 2), have unique BV winners other 
than c, the construction works in model TE as well.

It remains to show that S has an exact cover S ′ for B . Since w has to win (C, V 2) with the votes from the second voter 
group, not all voters from the first voter group can be in V 2 (otherwise c would have n points already on the first level). On 
the other hand, there can be at most m voters from the first voter group in V 1 because otherwise x would not be a level 1
BV winner in election (C, V 1). To ensure that no candidate contained in B has the same score as w , namely n points, and 
gets these points on an earlier level than w in (C, V 2), there have to be exactly m voters from the first group in V 1 and 
these voters correspond to an exact cover for B .

Without further adaptions, this reductions also covers the co-winner case. �
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Table 8
Level i scores for i ∈ {1, 2, m + 2} in the election (C, V ) from Construction 3.23.

c w b j ∈ B dp ∈ D er ∈ E

score1 n(k + 1) + 2m + mk n(k + 1) + 1 k − 1 ≤ 1 1
score2 n(k + 1) + 2m + mk + 1 n(k + 1) + mk + k ≤ k + n(k + 1) 1 1
score3 ≤ 2n(k + 1) + 2m + mk + 1 n(k + 1) + 2m + mk + k + 1 ≤ k + n(k + 1) 1 1
scorem+2 2n(k + 1) + 2m + mk + 1 n(k + 1) + 2m + mk + k + 1 ≤ k + n(k + 1) 1 1

Corollary 3.20. Fallback voting is resistant to constructive control by partition of voters in model TE and model TP, each in both winner 
models.

We now turn to destructive control by partition of voters in model TE where we show resistance for Bucklin and fallback 
voting via a reduction from the dominating set problem that has been defined in Section 2.3. The proof of Theorem 3.21 is 
deferred to Appendix A.

Theorem 3.21. Bucklin voting is resistant to destructive control by partition of voters in model TE for both winner models.

Resistance (and parameterized resistance) for fallback voting to this control type now follows immediately.

Corollary 3.22. Fallback voting is resistant to destructive control by partition of voters in model TE for both winner models.

The following construction will be used to handle the case of destructive control by partition of voters in model TP 
(see Theorem 3.25 below) for fallback voting. Construction 3.23 starts from an instance of the NP-complete problem RHS

defined in Section 2.3. This construction does not work for Bucklin voting, and we leave the complexity of this case (Bucklin-
DCPV-TP) open.

Construction 3.23. Let (B, S, k) be a given instance of RHS, where B = {b1, b2, . . . , bm} is a set, S = {S1, S2, . . . , Sn} is a collection of 
nonempty subsets Si ⊆ B such that n > m, and k is an integer with 1 < k < m. Define the election (C, V ), where C = B ∪ D ∪ E ∪{c, w}
is the candidate set with D = {d1, . . . , d2(m+1)} and E = {e1, . . . , e2(m−1)}. Note that the candidates contained in D and E are padding 
candidates (recall Footnote 12). The candidates in D ensure that w is always placed at the third position in the votes of the fourth voter 
group of V below. The collection of voters V consists of the following 2n(k + 1) + 4m + 2mk voters:

# For each . . . number of voters ranking of approved candidates

1 i ∈ {1, . . . ,n} k + 1 w Si c
2 j ∈ {1, . . . ,m} 1 c b j w
3 j ∈ {1, . . . ,m} k − 1 b j

4 p ∈ {1, . . . ,m + 1} 1 d2(p−1)+1 d2p w
5 r ∈ {1, . . . ,2(m − 1)} 1 er

6 n(k + 1) + m − k + 1 c
7 mk + k − 1 c w
8 1 w c

The strict majority threshold for V is maj(V ) = n(k + 1) + 2m + mk + 1. In election (C, V ), only the two candidates c
and w reach a strict majority, w on the third level and c on the second level (see Table 8). Thus c is the unique level 2 FV 
winner of election (C, V ).

Lemma 3.24 will be used in the proof of Theorem 3.25.

Lemma 3.24. In the election (C, V ) from Construction 3.23, for every partition of V into V 1 and V 2 , candidate c is an FV winner of 
election (C, V 1) or (C, V 2).

Proof. For a contradiction, suppose that in both subelections, (C, V 1) and (C, V 2), candidate c is not an FV winner. Since 
score1

(C,V )
(c) = ‖V ‖/2, the two subelections must satisfy that both ‖V 1‖ and ‖V 2‖ are even numbers, and score1

(C,V 1)
(c) =

‖V 1‖/2 and score1
(C,V 2)(c) = ‖V 2‖/2. Otherwise, c would have a strict majority already on the first level in one of the subelec-

tions and would win that subelection. For each i ∈ {1, 2}, c already on the first level has only one point less than the strict 
majority threshold maj(V i) in subelection (C, V i), and c will get a strict majority in (C, V i) no later than on the (m + 2)nd 
level. Thus, for both i = 1 and i = 2, there must be candidates whose level m + 2 scores in (C, V i) are higher than the level 
m + 2 score of c in (C, V i). Table 8 shows the level m + 2 scores of all candidates in (C, V ). Only w and some b j ∈ B have 
a chance to beat c on that level in (C, V i), i ∈ {1, 2}.
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Table 9
Level i scores in (C, V 1) for i ∈ {1, 2, 3} and the candidates in B ∪ {c, w}.

c w b j ∈ B ′ b j /∈ B ′

score1 k 0 k − 1 0
score2 k 0 k 0
score3 k k k 0

Table 10
Level i scores in (C, V 2) for i ∈ {1, 2, 3} and the candidates in B ∪ {c, w}.

c w b j /∈ B ′ b j ∈ B ′

score1 n(k + 1) + 2m − k + mk n(k + 1) + 1 k − 1 0
score2 n(k + 1) + 2m − k + mk + 1 n(k + 1) + mk + k ≤ k + n(k + 1) ≤ n(k + 1)

score3 ≥ n(k + 1) + 2m − k + mk + 1 n(k + 1) + mk + 2m + 1 ≤ k + n(k + 1) ≤ n(k + 1)

Suppose that c is defeated in both subelections by two distinct candidates from B (say, bx defeats c in (C, V 1) and by

defeats c in (C, V 2)). Thus the following must hold:14

scorem+2
(C,V 1)(bx) + scorem+2

(C,V 2)(by) ≥ scorem+2
(C,V )(c) + 2

2n(k + 1) + 2k − n(k + 1) ≥ 2n(k + 1) + mk + 2m + 3

2k ≥ n(k + 1) + mk + 2m + 3,

which by our basic assumption m > k > 1 implies the following contradiction:

0 ≥ n(k + 1) + (m − 2)k + 2m + 3 > n(k + 1) + (k − 2)k + 2k + 3 = n(k + 1) + k2 + 3 > 0.

Thus the only possibility for c to not win any of the two subelections is that c is defeated in one subelection, say (C, V 1), 
by a candidate from B , say bx , and in the other subelection, (C, V 2), by candidate w . Then it must hold that (again, see 
Footnote 14):

scorem+2
(C,V 1)(bx) + scorem+2

(C,V 2)(w) ≥ scorem+2
(C,V )(c) + 2

2n(k + 1) + 2k + 2m + mk + 1 − n(k + 1) − 1 ≥ 2n(k + 1) + mk + 2m + 3

2k ≥ n(k + 1) + 3.

Since n > 1, this cannot hold, so c must be an FV winner in one of the two subelections. �
Theorem 3.25. Fallback voting is resistant to destructive control by partition of voters in model TP, in both winner models.

Proof. Susceptibility holds by Corollary 3.2. To prove NP-hardness in the unique-winner model, we reduce RHS to our 
control problem. Consider the election (C, V ) constructed according to Construction 3.23 from a given RHS instance (B, S, k), 
where B = {b1, . . . , bm} is a set, S = {S1, . . . , Sn} is a collection of nonempty subsets Si ⊆ B , and k is an integer with 
1 < k < m < n.

We claim that S has a hitting set B ′ ⊆ B of size k if and only if c can be prevented from being a unique FV winner by 
partition of voters in model TP.

From left to right: Suppose, B ′ ⊆ B is a hitting set of size k for S . Partition V into V 1 and V 2 the following way. Let 
V 1 consist of those voters of the second group where b j ∈ B ′ and of those voters of the third group where b j ∈ B ′ . Let 
V 2 = V − V 1. In (C, V 1), no candidate reaches a strict majority (see Table 9), where maj(V 1) = �k2/2� + 1, and candidates 
c, w , and each b j ∈ B ′ win the election with an approval score of k.

The level i scores in election (C, V 2) for i ∈ {1, 2, 3} and the candidates in B ∪ {c, w} are shown in Table 10. Since in 
(C, V 2) no candidate from B wins, the candidates participating in the final round are B ′ ∪ {c, w}. The scores in the final 
election (B ′ ∪ {c, w}, V ) can be seen in Table 11. Since candidates c and w with the same level 2 scores are both level 2 FV 
winners, candidate c has been prevented from being a unique FV winner by partition of voters in model TP.

From right to left: Suppose candidate c can be prevented from being a unique FV winner by partition of voters in 
model TP. From Lemma 3.24 it follows that candidate c participates in the final round. Since c has a strict majority of 
approvals, c has to be tied with or lose against another candidate by a strict majority at some level. Only candidate w has 
a strict majority of approvals, so w has to tie or beat c at some level in the final round. Because of the low scores of the 
candidates in D and E we may assume that only candidates from B are participating in the final round besides c and w . 

14 For the left-hand sides of the inequalities, note that each vote occurs in only one of the two subelections. To avoid double-counting those votes that 
give points to both candidates, we first sum up the overall number of points each candidate scores and then substract the double-counted points.
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Table 11
Level i scores in the final-stage election (B ′ ∪ {c, w}, V ) for i ∈ {1, 2}.

c w b j ∈ B ′

score1 n(k + 1) + 2m + mk n(k + 1) + m + 2 k − 1
score2 n(k + 1) + 2m + mk + 1 n(k + 1) + 2m + mk + 1 ≤ k + n(k + 1)

Let B ′ ⊆ B be the set of candidates who also participate in the final round. Let � be the number of sets in S not hit by B ′ . 
As w cannot reach a strict majority of approvals on the first level, we consider the level 2 scores of c and w:

score2
(B ′∪{c,w},V )(c) = n(k + 1) + 2m + mk + 1 + �(k + 1),

score2
(B ′∪{c,w},V )(w) = n(k + 1) + 2m + mk + k − ∥∥B ′∥∥ + 1.

Since c has a strict majority already on the second level, w must tie or beat c on this level, so the following must hold:

score2
(B ′∪{c,w},V )(c) − score2

(B ′∪{c,w},V )(w) ≤ 0

n(k + 1) + 2m + mk + 1 + �(k + 1) − n(k + 1) − 2m − mk − k + ∥∥B ′∥∥ − 1 ≤ 0∥∥B ′∥∥ − k + �(k + 1) ≤ 0.

This is possible only if � = 0 (i.e., all sets in S are hit by B ′), which implies ‖B ′‖ ≤ k. Thus S has a hitting set of size at 
most k.

For this result, the adaption to the co-winner case is slightly more involved: First, one voter from group 6 has to be 
deleted. To compensate for this voter, a new voter group 9 has to be added, consisting of one voter with the preference 
c f w , where f is a new dummy candidate who is not approved by any voter except for one. This ensures that the remaining 
argumentation can be adapted straightforwardly while w gains one point on the second level in the final election and thus 
prevents c from being a winner. �
4. Conclusions and open questions

We have shown that, among natural election systems with a polynomial-time winner problem, fallback voting displays 
the broadest control resistance currently known to hold. We have also shown that Bucklin voting behaves almost as well 
(possibly even as well) as fallback voting in terms of control resistance. In particular, both voting systems are resistant to 
all standard types of candidate control and to all standard types of constructive control, and they are vulnerable to only 
two types of destructive voter control. One case remains open: destructive control by partition of voters in the tie-handling 
model “ties promote” for Bucklin voting, so it might turn out that Bucklin has one more vulnerability. For comparison, recall 
from Table 1 that approval voting is vulnerable to destructive control by partition of voters both in model TE and in model 
TP and that SP-AV is vulnerable to this control type in model TE but resistant in model TP.

We also strengthened some of our resistance (i.e., NP-hardness) results for (unparameterized) control problems by show-
ing that their parameterized variants for natural parameterizations are even W[2]-hard. It remains open whether or not 
these problems belong to W[2]. Another interesting task for future research along these lines is to find natural parameteri-
zations for the other problems (including some problems modeling control by partition of either candidates or voters) and 
to study their parameterized complexity.

From a theoretical point of view, it would also be interesting and challenging to complement our (parameterized) re-
sistance results by a typical-case analysis for control problems as has been done for manipulation (see, e.g., the work of 
Conitzer et al. [16], Procaccia and Rosenschein [60], Friedgut et al. [40], Isaksson et al. [50], Mossel and Racz [56], and 
Xia and Conitzer [64,65]). For experimental results on control in Bucklin and fallback voting, we refer to the companion 
paper [28] that is based on [62].
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Table 12
Level i scores in (C, V ) for i ∈ {n − 1, n, n + 1} and the candidates in B ∪ {c, w}.

bi ∈ B w c

scoren−1 ≤ n 1 0
scoren ≤ n 1 n + 1
scoren+1 ≤ n n + 1 n + 1

Appendix A. Deferred proofs

A.1. Resistance to destructive control by deleting candidates

Proof of Theorem 3.4. In light of Remark 2.4 it is again enough to give just one reduction to prove both claims at the same 
time. Starting again with the unique-winner case, for the W[2]-hardness proof in the destructive case for Bucklin voting, let 
(G, k) with G = (B, E) be a given instance of k-Dominating Set. Define the election (C, V ), where C = {c, w} ∪ B ∪ M1 ∪
M2 ∪ M3 ∪ X ∪ Y ∪ Z is the candidate set, c is the distinguished candidate, and M1, M2, M3, X , Y , and Z are sets of padding 
candidates (recall Footnote 12).

Padding candidates in M1, M2, and M3: M1, M2, and M3 are three pairwise disjoint sets, where each is a set of k can-
didates that are positioned in the votes so as to ensure that no other candidate besides w and c can reach a strict 
majority up to level n + k.

Padding candidates in X : X is a set of n2 − ∑n
i=1 ‖N[bi]‖ candidates such that for each i, 1 ≤ i ≤ n, we can find a subset 

Xi ⊆ X with n − ‖N[bi]‖ elements such that Xr ∩ Xs = ∅ for all r, s ∈ {1, . . . , n} with r �= s. These subsets ensure that w
is always placed at the (n + 1)st position in the first voter group of V below.

Padding candidates in Y : Y is a set of n − 1 padding candidates ensuring that c is at position n in the votes of the second 
voter group of V below.

Padding candidates in Z : Z is a set of n − 2 padding candidates ensuring that w is at position n − 1 and c is at position n
in the vote of the third voter group of V below.

V is the following collection of 2n + 1 voters, so we have a strict majority threshold of n + 1:

# For each . . . # of votes ranking of candidates

1 i ∈ {1, . . . ,n} 1 N[bi ] Xi w M1 ((B − N[bi ]) ∪ M2 ∪ M3 ∪ (X − Xi) ∪ Y ∪ Z) c
2 n Y c M2 (B ∪ M1 ∪ M3 ∪ X ∪ Z ∪ {w})
3 1 Z w c M3 (B ∪ M1 ∪ M2 ∪ X ∪ Y )

Table 12 gives an overview of the scores on the relevant levels of the relevant candidates in election (C, V ). Note that 
candidate c is the unique level n Bucklin winner of election (C, V ), since c is the first candidate reaching a strict majority 
of votes (namely, n + 1 points on level n, as indicated—here and in later score tables as well—by a boldfaced entry).

We claim that G has a dominating set of size k if and only if c can be prevented from being a unique Bucklin winner by 
deleting at most k candidates.

From left to right: Suppose G has a dominating set B ′ ⊆ B of size k. Delete the corresponding candidates. Now candi-
date w moves at least one position to the left in each of the n votes in the first voter group. Since candidate c reaches a 
strict majority no earlier than on level n and scoren

(C−B ′,V )
(w) = n + 1 = scoren

(C−B ′,V )
(c), candidate c is no longer a unique 

Bucklin winner of the resulting election.
From right to left: Suppose c can be prevented from being a unique Bucklin winner of the election by deleting at most 

k candidates. Note that deleting one candidate from an election can move the strict majority level of another candidate at 
most one level to the left. Observe that only candidate w can prevent c from winning the election, since w is the only 
candidate other than c who reaches a strict majority of votes until level n + k. In election (C, V ), candidate w reaches this 
majority no earlier than on level n + 1, and candidate c not before level n. Thus w can prevent c from being a unique 
winner only by scoring at least as many points as c no later than on level n. This is possible only if w is pushed at least 
one position to the left in all votes of the first voter group. By an argument analogous to that given in the constructive case 
for this control type (see the proof of Theorem 3.3), this implies that G has a dominating set of size k.

Note that this polynomial-time reduction is parameterized, as the given parameter k of k-Dominating Set is the same 
parameter k that bounds the number of candidates allowed to be deleted in the control problem.

To handle the co-winner model, one additional voter has to be added to V , with the preference w (M1 ∪ M2 ∪ M3 ∪ X ∪
Y ∪ Z) (B ∪ {c}). This ensures that on level n + 1 candidate w has one point more than c and can thus beat c strictly if and 
only if there is a dominating set of size at most k (which can be shown with an analogous argument to the one presented 
above). � Theorem 3.4
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Table 13
Level i scores of c, w , and x in (C, V ) for i ∈ {1, 2, 3}.

c w x

score1 k + n 0 k
score2 k + n 1 k
score3 k + n + 1 1 k

A.2. Resistance to destructive control by partition of voters in model TE

The following construction will be used in the proof of Theorem 3.21.

Construction A.1. Let ((B, A), k) be a given instance of Dominating Set with B = {b1, b2, . . . , bn} and n ≥ 1. Define the election 
(C, V ) with candidate set C = B ∪ D ∪ E ∪ F ∪ H ∪ {c, u, v, w, x, y}, where c is the distinguished candidate, D, E, F , H, and {u, v}
are sets of padding candidates (recall Footnote 12), and y is a “partition-enforcing” candidate (see below).

Padding candidates in D: D is a set of (k − 1)(n + 4) candidates such that for each j, 1 ≤ j ≤ k − 1, we can find a subset D j ⊆ D
with n + 4 elements such that Dr ∩ Ds = ∅ for all r, s ∈ {1, . . . , k − 1} with r �= s. These subsets ensure that no other candidate 
besides x gains more than one point up to level n + 5 in the third voter group of V below.

Padding candidates in E: E is a set of 2(k + n) candidates such that for each l, 1 ≤ l ≤ k + n, we can find a subset El ⊆ E with two 
elements and it holds that Er ∩ Es = ∅ for all r, s ∈ {1, . . . , k + n} with r �= s. These subsets ensure that x and y do not gain any 
points up to the fourth level in the fourth voter group of V below.

Padding candidates in F : F is a set of 3n candidates such that for each i, 1 ≤ i ≤ n, we can find a subset Fi ⊆ F with three elements 
such that Fr ∩ Fs = ∅ for all r, s ∈ {1, . . . , n} with r �= s. These subsets ensure that the candidates in B do not gain any points up 
to the fourth level in the first voter group of V below.

Padding candidates in H : H is a set of n2 candidates such that for each i, 1 ≤ i ≤ n, we can find a subset Hi ⊆ H with ‖N[bi]‖
elements such that Hr ∩ Hs = ∅ for all r, s ∈ {1, . . . , n} with r �= s. These subsets ensure that w does not gain any points up to 
level n + 5 in the first voter group of V below.

Padding candidates u and v: These two candidates ensure that the other padding candidates are not among the top n + 5 positions 
in the second voter group of V below.

Partition-enforcing candidate y: This candidate ensures that the voter from the second voter group of V below has to be in the 
subelection candidate w wins to finally beat c in the final election.

V consists of the following 2k + 2n votes that can be arranged in four groups:

# For each . . . number of votes ranking of candidates

1 i ∈ {1, . . . ,n} 1 Fi (B − N[bi ]) Hi y w · · ·
· · · (N[bi ] ∪ D ∪ E ∪ (F − Fi) ∪ (H − Hi)) u v c x

2 1 x w c B u v (D ∪ E ∪ F ∪ H) y
3 j ∈ {1, . . . ,k − 1} 1 x D j (B ∪ (D − D j) ∪ E ∪ F ∪ H) u v y w c
4 l ∈ {1, . . . ,k + n} 1 c El x y (B ∪ D ∪ (E − El) ∪ F ∪ H) u v w

Table 13 shows the scores of c, w , and x on the first three levels. None of the other candidates scores more than one 
point up to the third level. Note that c reaches a strict majority on this level and thus is the unique level 3 BV winner in 
this election.

Lemma A.2. In the election (C, V ) from Construction A.1, for every partition of V into V 1 and V 2 , candidate c is the unique BV winner 
of at least one of the subelections, (C, V 1) and (C, V 2).

Proof. For a contradiction, we assume that in both subelections, (C, V 1) and (C, V 2), candidate c is not a unique BV winner. 
Table 13 shows that half of the voters in V place c already on the first level. Thus, for i ∈ {1, 2}, ‖V i‖ must be an even 
number and score1

(C,V i)
(c) = ‖V i‖/2. Due to the voter in the second voter group, candidate c will get a strict majority on the 

third level in one of the subelections, let us say in (C, V 1). So there has to be a candidate beating or tieing with candidate c
on the second or third level in (C, V 1). The candidates in B , D , E , F , and H and the candidates u, v , w , and y do not score 
more than one point up to the third level. Thus only candidate x can possibly beat or tie with c on the second or third level 
in (C, V 1). However, since x does not score more than k points in total until the fourth level, c is the unique level 3 BV 
winner in subelection (C, V 1), a contradiction. It follows that c is a unique BV winner of at least one of the subelections. �

Using Lemma A.2, we are now ready to prove Theorem 3.21.
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Table 14
Level n + 5 scores in (C, V 1).

c w x y bi ∈ B

scoren+5 1 k + 1 k k ≤ k

Proof of Theorem 3.21. Susceptibility follows from Lemma 3.1. We again provide a reduction from the NP-complete problem
Dominating Set that has been defined in Section 2.3. Given a Dominating Set instance ((B, A), k), construct a Bucklin 
election (C, V ) according to Construction A.1.

We claim that G = (B, A) has a dominating set B ′ of size k if and only if candidate c can be prevented from being a 
unique BV winner by partition of voters in model TE.

From left to right: Let B ′ be a dominating set for G of size k. Partition V into V 1 and V 2 as follows. Let V 1 consist of 
the following 2k voters:

• The k voters of the first voter group corresponding to the dominating set, i.e., for those i with bi ∈ B ′ , we have one 
voter of the form: Fi (B − N[bi]) Hi y w (N[bi] ∪ D ∪ E ∪ (F − Fi) ∪ (H − Hi)) u v c x,

• the one voter from the second group: x w c B u v (D ∪ E ∪ F ∪ H) y, and
• the entire third voter group, i.e., for each j, 1 ≤ j ≤ k − 1, there is one voter of the form:

x D j (B ∪ (D − D j) ∪ E ∪ F ∪ H∪) u v y w c.

Let V 2 = V − V 1. Note that the strict majority threshold in V 1 is maj(V 1) = k + 1. Again, since the candidates in D , E , 
F , and H do not score more than one point up to level n + 5, their level n + 5 scores are not shown in Table 14. The level 
n + 5 scores of the remaining candidates are shown in this table. Note that w reaches a strict majority of k + 1 on this level 
(and no other candidate reaches a strict majority on this or an earlier level). Hence, w is the unique level n + 5 BV winner 
in subelection (C, V 1) and thus participates in the final round.

From Lemma A.2 it follows that candidate c is the unique winner in subelection (C, V 2). So the final-stage election is 
({c, w}, V ) and we have the following scores on the first two levels:

score1
({c,w},V )(c) = score1

({c,w},V )(w) = k + n,

score2
({c,w},V )(c) = score2

({c,w},V )(w) = 2k + 2n.

Since none of c and w have a strict majority on the first level, both candidates are level 2 BV winners in this two-candidate 
final-stage election. Hence, c has been prevented from being a unique BV winner by partition of voters in model TE.

From right to left: Assume that c can be prevented from being a unique BV winner by partition of voters in model TE. 
From Lemma A.2 we know that candidate c must participate in the final-stage election. Since we are in model TE, at most 
two candidates participate in the final run-off. To prevent c from being a unique BV winner of the final election, there must 
be another finalist and this other candidate has to beat or tie with c. Since w is the only candidate that can beat or tie with 
c in a two-candidate election, w has to move on to the final round to run against c. Let us say that c is the unique winner 
of subelection (C, V 2) and w is the unique winner of subelection (C, V 1). For w to be the unique winner of subelection 
(C, V 1), V 1 has to contain voters from the first voter group and w can win only on the (n + 5)th level. In particular, x is 
placed before w in all voter groups except the first, so w can win in (C, V 1) only via voters from the first voter group 
participating in (C, V 1). Moreover, since w is placed in the last or second-to-last position in all voters from the third and 
fourth groups, and since there is only one voter in the second group, w can win only on the (n + 5)th level (which is w ’s 
position in the votes from the first voter group).

Let I ⊆ {1, . . . , n} be the set of indices i such that first-group voter

Fi (B − N[bi]) Hi y w (N[bi] ∪ D ∪ E ∪ (F − Fi) ∪ (H − Hi)) u v c x

belongs to V 1. Let � = ‖I‖. Since w is the unique level n + 5 BV winner of subelection (C, V 1) but y is placed before w
in every vote in the first group, the one voter from the second group (which is the only voter who prefers w to y) must 
belong to V 1. Thus we know that

scoren+5
(C,V 1)(w) = � + 1 and scoren+4

(C,V 1)(y) = scoren+5
(C,V 1)(y) = �.

For the candidates in B , we have

scoren+4
(C,V 1)

(b j) = scoren+5
(C,V 1)

(b j) = 1 + ∥∥{
bi

∣∣ i ∈ I and b j /∈ N[bi]
}∥∥,

since each b j scores one point up to the (n + 4)th level from the voter in the second group and one point from the first 
group for every bi with i ∈ I such that b j /∈ N[bi] in graph G . Again, since w is the unique level n + 5 BV winner of 
subelection (C, V 1), no b j ∈ B can score a point in each of the � votes from the first voter group that belong to V 2. This 
implies that for each b j ∈ B there has to be at least one bi with i ∈ I that is adjacent to b j in G . Thus, the set B ′ of 
candidates bi with i ∈ I corresponds to a dominating set in G .
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Recall that scoren+5
(C,V 1)(w) = � + 1 and scoren+4

(C,V 1)(y) = �. Note also that scoren+4
(C,V 1)(b j) ≤ � for 1 ≤ j ≤ n. Since w needs a 

strict majority to be a BV winner in subelection (C, V 1), it must hold that maj(V 1) ≤ � + 1. Since y and the b j ∈ B have a 
score of � already one level earlier than w , it must hold that maj(V 1) = � + 1, which implies ‖V 2‖ = 2� or ‖V 2‖ = 2� + 1. 
To ensure this cardinality of V 1, other votes have to be added. Since y must not gain additional points from these votes up 
to the (n + 5)th level, they cannot come from the fourth voter group. The remaining votes from the third voter group total 
up to k − 1. Thus, since w is the unique BV winner in subelection (C, V 1), it must hold that � ≤ k. So ‖B ′‖ = � ≤ k and this 
means that there exists a dominating set of size at most k.

Observe that reducing from the W[2]-complete parameterized problem k-Dominating Set with the same construction 
and the new parameter k′ = 2k (the size of the smaller partition), we can prove that destructive control by partition of 
voters in model TE in Bucklin voting is W[2]-hard.

For the co-winner case, a fifth voter group has to be added consisting of one voter of the form H F D E B w c x and 
this voter has to be part of V 1. This ensures that w is the unique level 1 winner in the final election, thus preventing c
successfully from being a winner. � Theorem 3.21
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